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1,0 INTRODUCTION

This report summarizes the System Architecture Study of the Sensor Data

Validation and Reconstruction Task of the Development of Life Prediction Capabilites For

Liquid Propellant Rocket Engines Program, NAS 3-25883. The effort to develop

reusable rocket engine health monitoring systems has made apparent the need for life

prediction techniques for various engine systems, components, and subcomponents.

The design of reusable space propulsion systems is such that many critical components

are subject to extreme fluctuations causing limited life, which is not adequately explained

by current techniques. Therefore, the need exists to develop advanced life prediction

techniques. In order to develop a reliable rocket engine condition monitoring system,

erroneous transducer data must be identified and segregated from valid data.

Erroneous sensor data may result from either (1) "hard" failures which are typically large

in magnitude and occur rapidly or (2) "soft" failures which are typically small in magnitude

and occur slowly with time. The underlying causes of such failures can include physical

damage (e.g. wire or diaphragm breakage), calibration/software errors, or thermal drift.

The objective of this task has been to develop a methodology for using proven analytical

and numerical techniques to screen the SSME CADS and facility data sets for invalid

sensor data and to provide signal reconstruction capability. This methodology is

structured to be an element of an overall Engine Diagnostic System [1].

The approach taken to develop this methodology has been to evaluate sensor

failure detection and isolation (FDI) and signal reconstruction techniques relative to the

problem of SSME sensor data validation. From this evaluation, applicable techniques

have been identified and an overall computational strategy has been developed to

provide automated FDI and signal reconstruction capability. The overall computational

strategy is based on the use of an advanced data synthesis technique which is capable

of combining the results of several different test of sensor validity (such as limit checks,

hardware redundancy, sensor reliability data, and predictive models). The output of this

task is a software specification for this strategy and a software implementation plan.
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The current SSME data validation procedure at NASA MSFC is based on a

manual review of test data by expert analysts. To date this system has worked well, but

is an inefficient use of the valuable time of the expert, who must visually inspect each

data plot looking for anomalous data. One of the key elements of the Engine Diagnostic

System currently under development by NASA, is to exploit recent advances in

computational and graphics performance of modem RISC type work stations and

advanced computational techniques to automate, streamline, and improve the rocket

engine diagnostic procedure. The System Achitecture Study described in this report has

addressed this issue for the problem of sensor data validation. Verifying test data is

essential prior to doing performance calculations or engine health assessments.

The System Architecture Study has consisted of (1) a review of the current SSME

data validation process at MSFC, (2) selection of key SSME CADS and facility data set

parameters for which automated data validation and reconstruction is desirable, (3)

review and selection of potential techniques for parameter fault detection and

reconstruction, and (4) development of a computational scheme incorporating the

techniques. Based on the work conducted in this phase of the program a software

specification of the Sensor Data Validation and Reconstruction System (SDV&RS) has

been developed and is described in detail in Section 4.0. The recommended

development plan for implementation of the software specification is described in Section

5.0.

A wide range of sensor failure modes exists for the SSME digital data sets. Table

1 lists some of the causes and effects of several known modes documented in the SSME

Failure Modes and Effects Analysis [2] and documented in the UCR (Unsatisfactory

Condition Report) database. The resultant transducer signals range from hard-open,

shorted, noisy, intermittent, to slight drifts and shifts. In order detect, isolate, and

reconstruct signals resulting from this wide range of failure modes several potential

validation techniques have been reviewed and evaluated. Table 2 summarizes the

techniques which have been examined for use in the SDV&SR system.

No single fault detection scheme appears solely capable of accurately detecting

and reconstructing all of the important SSME sensor malfunctions. Each technique

provides some evidence regarding sensor failure, and different techniques work best for

different failure modes. The overall conclusion of this study is that the best approach for

2
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robust and complete sensor data validation is to use several methods and fuse their

individual results into a single pass/fall decision for every sensor at every time slice in the

test.

Information fusion techniques provide explicit representation of and accounting

for the uncertainties in the sensors and in the various fault detection schemes. Of the

various techniques for performing information fusion, Belief Networks have been

determined to be the most appropriate for the advanced liquid rocket engines such as

the SSME.

The overall SDV&SR system as currently specified is illustrated in Figure 1. The

system will run in two major stages; initial batch processing mode, followed by an

interactive post processing mode. In the batch mode, the SSME test data (in

engineering units) is thoroughly analyzed by the sensor validation system, with PID

failure detection and PID value reconstruction performed automatically and stored in a

separate data file. The batch mode process will be completed overnight following a test

and the results will be available to the analyst at the start of the day. The purpose of the

interactive mode is to allow analysts to quickly review and understand the results of the

batch mode processing and either confirm or override the failure and reconstruction

decisions made by the sensor validation system.

6
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3.0 TECHNICAL DISCUSSION

The following section describes the technical progress accomplished during the

Phase 1 of the task. The principle sections consist of (1) review of SSME test data and

current validation procedure, (2) evaluation of fault detection and signal reconstruction

techniques, and (3) review of information synthesis techniques for combining tests of

sensor validity.

3.1 Review of SSME Teat Data and Validation Procedure

3.1.1 SSME CADS and Facility Digital Data

The SSME CADS and facility data sets consist of approximately 130 and 280

individual parameters respectively. Each parameter is identified with a unique number

code call a parameter identification number (PID). The various PIDs consist of

transducer signals, calculated parameters, and controller signals. Of the approximately

410 PIDs, there are approximately 325 actual sensor signals. A complete PID list is

provided in Appendix A.

A review of CADS and facility sensors for which automated data validation and

reconstruction would be desirable has been conducted. The list sensors for which

validation and signal reconstruction selected is given in Table 3. A total of 115

transducers have been selected. The criterion used to select a sensor for validation

were, in order of importance:

(1) Is the sensor an engine control parameter?

(2) Is the sensor an engine redline parameter?

(3) Is the parameter plotted for pre or post-test reviews?

(4) Is the sensor used in the steady state engine power balance model?

(5) Additional sensors providing redundancy or correlation to sensors in (1)

through (4).

Categories (1) and (2) comprise the most critical sensors in the engine. Sensors

which fall under category (3) are assumed to be important for diagnosing engine health

since they are routinely examined by the MSFC SSME data analysts. It is expected that

engine diagnostics elements of the Engine Diagnostic System (EDS) would use the

same set of inputs. The sensors falling under category (4) should be validated since

they are used in the performance model calculate specific impulse of the engine.

8



Table 3. SSME Sensors Selected For Sensor Validation

;MEASUREMENT

MCC COOLANT DISCH PRESS CH AI
MCC COOLANT DISCH TEMP CH B
MCC OXID IN/TEMP
MCC HOT GAS IN/PRESS CH A
LPOP SPD CH B
LPFP S PD CH A
HEX DS PR (A49P9655H)
HPFF COOLANT PRESS CH A
HPFP COOLANT PRESS CH B
HPOTP SEC SEAL CAV PRESS CH A
HPOTP SEC SEAL CAV PRESS CH B
PBP DISCH TEMP CH A
PBP DISCH TEMP CH B
MCC PRESSURE CH A2
MCC PRESSURE CH AI
FUEL FLOWRATE CH A1
MFV ACTUATOR POSITION CH A
MFV ACTUATOR POSITION CH B
MOV ACTUATOR POSITION CH A
MOV ACTUATOR POS/TION CH B
9POV ACTUATOR POSITION CH A
OPOV ACTUATOR POSITION CH B
FPOV ACTUATOR POSITION CH A
FPOV ACTUATOR POSITION CH B
L'CV ACTUATOR POSITION CH A
OCV ACTUATOR POSITION CH B
HYDRAULIC SYS PRESSURE A
FUEL PREBURN PGE PRESS CH A
OXID PREBNR PGE PRESS B
HPFP DISCH PRESS CH A
FPB CHMBR PR A
PBP DISCH PRESS CH B
MCC PRESSURE B2
MCC PRESSURE BI
HPOP DISCH PRESS CH A
LPFP DISCH PRESS CH A
LPFP DISCH PRESS CH B
LPOP DISCH PRESS CH A
LPOP DISCH PRESS CH B
HPOTP I-SEAL PGE PRESS CH A
HPOTP I-SEAL PGE PRESS CH B
HYDRAULIC SYS PRESSURE CH B
FUEL SYS PGE PRESS CH A
FUEL SYS PGE PRESS CH B
POGO PRECHG PRESS CH A
POCK) PRECHG PRESS CH B
EMERG SHT DN PRESS CH A
EMERG SHT DN PRESS CH B
LPFP DISCH TEMP CH A
LPFP DISCH TEMP CH B
HPFT DISCH TEMP CH A
HPFT DISCH TEMP CH B
HPOT DISCH TEMP CH A
HPOT DISCH TEMP CH B
MFV HYD TEMP CH A
MFV HYD TEMP CH B
MOV HYD TEMP CH A
MOV HYD TEMP CH B
FUEL FLOWRATE CH A2
FUEL FLOWRATE CH B2
FUEL FLOWRATE CH AI
HPFP SPD A
HPFP SPD B
ANTI-FLOOD VLV POS CH A
ANTI-FLOOD VLV POS CH B
FUEL FLOWRATE CH BI
LVL S BARO PR
HPOP DS PR NFD
PBP DS PR NFD
MAIN INJECTOR LOX INJECTION PR N
LPFT IN PR
HPFTP DISCH PR NFD
9PB PC
MFV DIS SKIN T1

C 18
C 21
C 24
C 30
C 32

C 34
C 53
C 54
C 91
C 92
C 93
C 94
C 129
C 130
C 133
C 136
C 137
C 138
C 139
C 140

C 141
C 142
C 143
C 145
C 146
C 147
C 148
C 149
C 152
C 158

C 159
C 161
C 162
C 190
C 2O3
C 2O4
C 2O9
C 210
C 211
C 212
C 214
C 219
C 220
C 221
C 222
C 223
C 224
C 225
C 226
C 231
C 232
C 233
C 234
C " 237
C 238
C 239
C 24O
C 25!
C 253
C 258
C 260
C 261
C 268
C 269
C 301
F 316
F 334
F 341
F 395
F 436
F 459
F 480
F 553

'DATA
UNII_ :LOW

PSIA 0
DEG R 360
DEGR II0
PSIA 0
RPM 180
RPM 600

PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
DE(}R 160
DEG R 160

PSIA 0
PSIA 0
GPM 1080
PCT -5
PCT -5
PCT -5
PCT -5
PCT -5

PCr -5
PUt -5
PCT -5
PCT -5
PCT -5

PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
PSIA 0
DEG R 30
DEG R 30
DEG R 460
DEG R 460
DEG R 460
DEG R 460
DEG R 360
DEC}R 360
DEC}R 360
DEG R 360
GPM 1080
GPM log0
GPM log0
RPM 1350
RPM 1350

-5
-5

GPM 1080

PSIA 0
PSIG 0
PSIG 0
PSIG 0
PSIA 0
["SIS 0
DE(; R 35

)AT'A
_OH

7OOO

760
610

7000
6OOO
2OOOO

7O00
4500

45OO
3OO
300

210
210

35OO
3500
18000

105
I05
105
105
105

105 [
105 I

105
105
1051

1500 I
9500 I
7O00 I
95OO
3500 I
35OO
7000

3OO
300
6001
600
600
600

4000
60O
600i

1500 I
1500 l
1500
15001

55 _
55

2760!
2760
276O
276o!
760
760

18OOO
18OOO
45000
450(1131

105 1
105 I

18000

7000
9500
50O0

10000
9500

10000
56O

DISCIUFrR)N

,Pressure

T_mpemmre
Temperature
Pressure

;Rate

iRate
Pressure
Pressure

Pressure
Pressure
Pressure

iTemperamre
Temperature
Pressure
Pressure
Rate

Positicm/Disp.
IPositicm/Disp.
Po$ifion/Disp.
Pmition/Disp.
Position/Disp.
PosRion/Disp.
Posifon/D/sp.
Position/Disp.
Po.ition/Disp.
Position/Disp.
Pressure
Pressure

Pressure
Pressure
Pressure
Pressure
Pressure
Pressure
Pressun_
Pressure
Pressure
Pre.ure
Pressure
Pressure
Pressure
Pressure
Pressure
Pressure
PresSUre

Pressure

Pressure
Pressure
Temperature
Teanpemture
Temperature
Temperature
Temperature
Temperature
Temperemre
Temperature
Temperature
Temperature
Ram
Ram
Ram
Ram
Rate
Position/Disp.
Position/Disp.
Ram
Pressure
Pressure
Pressure
Pressure
Pressure
Pressure

iPressure

,Temperature

• 9



Table 3. Con't.

MEAS PID DATA DATA
MEASUREMENT SET UNITS LOW HIGH

MFV DIS SKIN T2 F 554
MCC LOX DOME T NO 3 (NOT APFROV F 595
HPFP CLNT LINER TEMP F 650
HPFP DS TEMP F 659
ENGINE FUEL FLOW NFD (A49R8038A) F 722
LPOP SPD NFD (A49R8651 A) F 734
LPFP SPD NFD (A49Rg001 A) F 754
HPFP SPD NFD (A49R8101A) F 764
ENG FLIN PR 2 F 819
ENG FL IN PR 1 F 821
ENG FL IN PR 3 F 827
ENG OX IN FR I F 858
ENG OX IN PR 2 F 859

[ENG OX IN PR 3 F 860
iHEAT EXCHANGER INTERFACE PRESS: F 878
!HEAT EXCHANGER INTERFACE TEMP F 879
HPOP PR SL DR PR 1 F 951
HPOP PR SL DR P2 F 952
HPOP PR SL DR P3 F 953
ENGINE GN2 PURGE INTRF PRESS F 957
HPOT PR SL DR PR F 990
FAC LH2 FLOWMETER OUTLET TEMP F 1017
LPTOP INLET TEMP F 1058
FAC FUEL FLOW I F 1205
FAC FUEL FLOW 2 F 1206
FAC OX FLOW 1 F 1212
FAC OX FLOW 2 F 1213
HORZ FIA F 1345
HORZ F2A F 1350
VERT FIA F 1360
VERT FIB F 1361
VERT V2A F 1365
VERT F3A F 1370
VERT F3B F 1371
AFV DIS SKIN TEMP NO 1 F 1420
AFV DIS SKIN TEMP NO 2 F 1421
GIM BR LNG 1 (A49D8607A) F 1543
GIM BR LNG 2 (A49D8608A) F 1544
GIM BR LNG 3 (A49D8609A) F 1547
MCC LINER CAV P2 F 1956
MCC LINER CAV P3 F 1957

DISCRIFHON

DEG R 35 560 Temperature
DEGR 110 610 Temperature
DEG R 0 560 Temperature
DEG R 30 1200 Temperature
GPM 0 29000 Rate
RPM 0 6400 Rate
RPM 0 24000 Rate
RPM 0 48000 Rate
PSIS 0 1{30 Rate
PSIS 0 100 Pressure
PSIS 0 100 P,essure
PSIS 0 250 Pressme
PSIS 0 250 Pl_ssure
PSIS 0 250 l_ssum
PSIS 0 5000 Pt_ssurt
DEG F 160 1900 Te_npemture
PSIG 0 100 Pressure
PSI 0 I00 I_esm_
PSI 0 100 Presmre
PSIS 0 I000 Presmm
PSI(} 0 I00 Pmlmre
DEG R -430 -380 Temperature
DEGR 160 180 Temperature
GPM 0 22000 Rate
GPM 0 22000 Rate
GPM 0 8500 Rate
GPM 0 8500 Rate
KLB 0 I00 Force
KLB 0 100 Force
KI_ 0 225 Force
KLB 0 225 Force
KI_ 0 225 Force
KL8 0 225 Force
KLB 0 225 Force

DEG R 160 560 Temperature
DEG R 160 560 Temperature
GRMS 0 30 Vibration
GRMS 0 30 Vibration
GRMS 0 30 Vibrstion
PSI 0 200 PreJture
PSI 0 200 Pie#sum

10
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The specific breakdown of sensors for which data validation and reconstruction is

recommended is:

Engine Control Parameters

Flight Red Line Sensors

Test Red Une Sensors

Sensors Used For Engine Diagnostic

Sensors Used In Power Balance Model

13 PIDs

16 PIDs

23 PIDs

39 PIDs

23 PIDs

3.1.2 Current SSME Data Validation Procedure

The current SSME data validation procedure at NASA MSFC was reviewed to (1)

determine the performance requirements (turn-around time, accuracy, etc.) of an

automated data validation and reconstruction system from a user stand point, (2) assess

the techniques currently employed for data validation, and (3) obtain first-hand

knowledge of the characteristics of the SSME data. Interviews were conducted with

NASA and Martin Marietta personnel directly involved in day-to-day evaluation of test

data. Summaries of the specific interviews are contained in Appendix A.

Sensor data validation is the responsibility of Martin Marietta data analysts

employed at NASA MSFC. Data validation is performed as part of their overall

responsibility for assessing the health of particular engines. The current MSFC data

validation process is illustrated in Figure 3. The elements of the process described

below. A detailed description of the process is contained in Reference [1].

1.0 Following an SSME test firing at NASA Stennis, the raw test data

(voltages) are converted to engineering units using transducer calibration

data. The data is transferred to NASA MSFC and down loaded to Perkin

Elmer 4 computer system.

2.0 A standard set of plots is prepared and is available to the data analyst by

8:00 am following the day of a test. Included in these plot packages are

data from previous test firings which have been requested by the data

analysts. These previous data are chosen from the most recent tests

which involved either the (1) the same engine, (2) the same power-head

set, and (3) preferably the same test stand (A1, A2, or B2).

11
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3.0 The test data packages and data files are simultaneously reviewed by two

groups. The first group is the performance analysis group which uses the

test data as input to the SSME steady state power balance model.

4.0 Concurrent with the power balance analysis the Systems Analysis Group

(typically one lead analyst and one support analyst) performs a manual

review of the data and use existing data validation codes to screen the

data. The group currently uses two FORTRAN computer codes to screen

data to detect faulty data.

- Two Sigma Comparison Code:

- Spike Detection and Shift Code:

5.0 Comparison of results are made between the two groups to identify

potential faulty data. By the conclusion of process 5.0 (typically an eight

hour shift), all anomalies detected in the data are attributed to engine

behavior or transducer malfunction.

6.0/7.0 The results of the test data analysis process (3.0,4.0, and 5.0) are

presented in the post test review. Instrumentation action items are flagged

for the next pretest review.

Sensor data validation occurs in steps 3.0 and 4.0. As indicated on the process

flow diagram results from the power balance calculation and the manual data review are

shared. It is not uncommon for the initial run of the power balance model to produce

anomalous results (typically a noticeable change in calculated specific impulse). After

detailed inspection of the input PIDS and intermediate calculations of the model, failed

sensors are identified and excluded from the input deck of the model. Soft failures

present a particular problem to the power balance model because their magnitude is

often not large enough to violate currently employed limit checking procedures, but can

significantly impact calculation of key performance parameters.

When a sensor is suspected of a failure, a "confirmation" procedure is used to

confirm failure. The experienced data analyst will look at the following evidence to

determine a sensors validity.

13
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. Pre and post test values indicate if the transducer was scaled, calibrated,

or installed improperly. Additionaly, if a sensor does assume a normal

steady post test value, then transient effects such as thermal drifts may

have caused the failure.

. Related sensors (such as upstream and downstream pressures and

temperatures) are inspected to see if they agree with the failed sensor.

. The signal is compared to previous measurements made with the same

engine components.

Several aspects of the current NASA MSFC data validation procedure have been

adopted in the Sensor Data Validation and Signal Reconstruction System described in

section 4.0. These key features are:

1. integration of many sources of information for determining sensor

validity (see Section 3.3);

2. use of calculated engine system parameters to indicate an

inconsistent sensor reading (see Section 3.2 on characteristic

equations);

3. comparison of data patterns to known "nominal* patterns.

3.1.3 SSME Sensor Failure Modes

A wide range of sensor failure modes exist for the SSME digital data sets as

summarized in Table 1. The general requirements of the senser data validation and

reconstruction system to detect these diffent types of failure modes is described in the

Systems Users Requirements Summary Report in Appendix A. During the task, data

from 20 recent SSME test firing was reviewed to identify common failure modes Table 4

lists 22 sensors which were documented as failed in the 20 tests reviewed. Of the 22

sensors, 13 failed only once in the 20 tests examined and a few sensors such as the Fuel

Preburner Chamber Pressure, PID 158, which has history of thermal drift, failed on 85%

of the tests. Extension of the sensor failure frequency data to a larger number of tests

will allow a more comprehensive database of sensor reliability to be constructed. The

use of such data can be incorporated into the SDV&SR data system as described in

Section 3.3.

14
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Figure 4 illustrates four common failure signatures of the SSME pressure and flow

transducers. Thermal drift of the FPB Pc and the OPB Pc are common failure modes

due to their installation on the SSME. The characteristic behavior is for the signal to

appear normal during startup, but during mainstage to begin to decay due to icing.

Intermittent or "hashy' signals are typically due to poor electrical connections as noted in

Table 1. These signals generally appear normal except for large spikes off scale either

over or under the scaled range. Fuel turbine flow meters and pump speed transducers

can exhibit signal aliasing such that false signal fluctuations appear in the data. During

power level transitions many pressure and temperature transducers experience over and

under shoot causing their data to be invalid during a brief period of time while recovery

occurs. This type of behavior is considered a sensor failure because the data is not

valid, even though there is not a problem with the transducer. Figure 5 shows some of

the documented SSME sensor failures.

15



gLO-18 • • •

" • • a'Jt,LO'l.8 i
T,D

£L O"I.8 . . . ,,s.

_Lo-te • • • i • © '_-

®: OZO-Le • • • . .,, ._

| 69o-L. • . . _
L90-L8 • • • c_

= _. _90" 1.8 " " m

_ t,9o-Le • • ._,
SSO-LE! • •

96t_'_V • • ¢_

iE _;61z'_V • c.

_) t;6l-i:V - • c_
C_

_9"LV • •

,, o_9-Lv. ii ,,,
= 6 L9"LV • • c_

91.9-Lv • •

i i o' ==._=0.= ==. =0. =0. ==._ ,--= E ==E E E 2,0"=E E ,,_,

16



"" '--- mm m

.m _ area,

_m, atom

--" _ mm m

_ m m

_Jnss_J d

!

t I

t I

t/

/

_Jnssax d

c-

O

e-
O)

|m

E
!__

G)

e"
m

im
i.__

°.,._

E
I....

t
0

0

(
X

oanssoad

W

1 -M

I +
e" "-

_ "_.m ,'r"
<

)
(

_oI_

17



7000

6000

50OO

2000

1000

0
-100

6OOO

Failure

0 100 400 500200 300

Time (soc)

60O

¢/J

°_.-4

5OOO

4o0o ......................................................................_.........................................................................!......

3ooo ................................................................................................................................................i......

2000 .................................................................................................................................................. , ......

10_0 .......................

0
-100 0

I I I ,I I

1_ 2_ 3_ 400 5_ 6_

Time (see)

Figure 5. Examples of Failed SSME Senior Signals

18



NAS 3-258113

3.2 EvaluaUon of Fault Detection and Signal ReconstrucUon Techniques

Table 2 summarizes the various fault detection and isolation techniques which

were reviewed during the task. As noted in the table, applicable literature for the various

techniques has been reviewed and in some cases demonstrated with available SSME

test data at Aerojat. A description of the applicability and limitations of each of these

techniques as applied to SSME data is given below.

3,2.1 Statistical Comparison Techniquu

Statistical comparison techniques cover the class of techniques where the signal

value or statistics of the transducer signal are compared to known "acceptable" values.

Three of these techniques which are suitable for SSME data validation are described

below. The first technique is limit checking tests which serves as a basic indicator if a

transducer signal is within the expected envelope of "nominal" operation. The second

technique discussed is an extreme value exceedance test which can differentiate true

signal behavior from spurious spikes in the data. The third statistical comparison test is

a moving average test which indicates if a significant trend exists in the data.

Comparison of a signal to predefined limits constitutes the simplest form of

sensor data validation [3,4]. If the signal exceeds the limit it is considered "out of family"

and indicates either an instrumentation error or an engine component failure. Common

limits used in data validation schemes are:

1. High and low data ranges of the transducer

2. Two or three standard deviation variation from the mean

3. Comparison of signal statistical values to "family" averaged values.

Umit checking is for sensor failure detection is limited to severe hard failures. In

order to detect soft failures such as drifts, simple limits must be set so tight that an

unacceptably high number of false detections occur. Currently the SSME test data is

compared to the 'q'wo Sigma" database as part of the data analysis. Figure 6 shows

some typical data plot with the two sigma limits indicated.

A table of the 'q'wo Sigma" database is given in Appendix C. In order to rationally

compare different tests, the average values of parameters are taken at (1) the maximum

fuel turbine temperature, (2) the maximum oxidizer turbine temperature, and (3) at the
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nominal 104% LOX vent. Figure 7 shows a typical thrust profile and the locations of each

of the conditions listed above.

The "sigma" bands reflect a wide variation in "nominal" operating conditions for

some parameters. This variability is due to the averaging effect obtained by using data

from various engines and test stands when populating a statistical database. While

these statistically based techniques are relatively effective in detecting signals that have a

large drift or a low signal to noise ratio, it is possible that a noisy signal can lie within the

"sigma" band and go undetected. This is shown graphically in Figure 3.

Data Soikes Detection

Data spikes are sharp and significant changes in data, not attributable to

measurable physical phenomena, but due to a instrumentation anomaly, such as a

malfunctioning A/D converter. Removal of spurious spikes from measured data is

necessary to improve quality of the data and therefore any conclusions drawn from the

data.

One approach to identifying such spurious signals is with extreme value

probability theory [5]. Extreme value theory is concerned with the probability distribution

of the extreme value of a sample of n independent observations of a random variable.

Given this extreme value probability distribution, a detection limit can be established with

an arbitrarily low probability of exceedance for the largest value of n independent

observations.

The theoretically exact distribution of the extreme largest value (Y) from n

independent observations of a random variable (X) is defined in terms of cumulative

distribution functions:

Fy(y) = [Fx(Y)] n

The particular value of Y =y corresponding to a cumulative probability p can then

be determined from the distribution of X as follows:

[Fx(y)] n = p

Fx(Y) = pl/n

y = Fx-1 (pl/n)

Thus y is determined directly from the inverse cumulative distribution function of X.
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For example, let n = 10,000 be independent observations of a normal variate X

and let p = 0.99 define the arbitrarily established detection limit. Then this detection limit

(y) is calculated as follows in terms of standard deviations from the mean.

y = Fx-1 (pl/n) = Fx-1 (0.999999) = 4.76

The inverse of the normal cumulative distribution function is conveniently tabulated.

Therefore if the detection limit is set at 4.76 standard deviations above the mean

of a normal distribution and if 10,000 independent observations are made of this normal

random variate, then the single largest of these observations will be expected to exceed

this detection limit, on the average, one percent of the time. More realistically, many

sensors which are prone to spiked data will usually have an exceedance probability

much greater than one percent. This higher probability can be determined by

examination of previously obtained data, and reflected by lowering P to a more realistic

value. Such application of extreme value theory can be used to define a detection limit,

the exceedance of which may reasonably be assumed to constitute a spurious data

spike.

MoYirlg Averages

As discussed in Section 3.1.3, soft failures usually manifest themselves as slowly

changing drifts typical of thermally sensitive failure modes. As seen in Figure 6, varying

amounts of dynamic fluctuations of the signals about their mean values occur during

steady power level operation of the SSME. The sources of these fluctuations are (1)

quantitization error during A/D conversion, (2) electrical noise induced by mechanical

vibration of engine, and (3) dynamic excursions of the engine resulting from the closed

loop control logic of the engine. In order to extract the true trend data signal a simple

moving average of the data can be calculated [6,7]. Some SSME failure detection

algorithms such as the System For Anomaly and Failure Detection (SAFD) [8] algorithms

are based on monitoring the moving average of many parameters. Figure 9 illustrates

the smoothing effect of a noisy signal by applying a moving average calculation. The

simplest moving average can be defined as:

Yi =_" Yi/N
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where: N = a fixed number of previous points (25 for a 1 second

average of CADS data)

Yi = sensor reading at a given time slice

The moving average smooths the signal and reveals the true trend of the data.

While the overall trend is apparent to a trained expert, evaluation of the time derivative

from the raw signal at a given time slice can yield a meaningless result (e.g. a positive

value when the true trend has a negative slope).

The moving average computation provides a good means of extracting trend data

from signals. For sensor fault detection the signal trend is insufficient to identify a bad

signal. The trends (transients) in sensor values of the SSME can be caused by factors

other than power level change, such as (1) engine component anomalies, (2) propellant

transfer which causes changes in propellant inlet temperatures, and (3) propellant tank

venting and repressurization, which causes pump inlet pressure changes.

3.2.2 Analytical Redundancy Techniques

Analytical redundancy for sensor data validation consists of three parts, (1)

parameter estimation, (2) parameter fault detection, and (3) fault isolation [10, 11, 12].

The principle advantage of analytical redundancy techniques over the statistical

comparison techniques discussed above is that the parameter estimation model

provides a means of signal reconstruction which is a key element of the SDV&SR

system.

The major uncertainties regarding the development of an analytical redundancy

capability for the SSME sensors have been addressed. These issues are the following:

1. How many of the Sensor PIDs of interest can be can be modeled as linear

or nonlinear combinations of other parameters?

2. Is the accuracy of these models sufficient to enable reasonable fault

detection?

3. Can a robust fault isolation methodology be developed for the resulting

models?

Issues (1) and (2) above involve a basic tradeoff model complexity (i.e. number of

terms in equations and form of model) and the accuracy of the estimate, as illustrated in
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Figure 10. Two schemes which represent the limits of this tradeoff are (1) the "dedicated

observer scheme" (DOS) [13] and (2) the "generalized observer scheme" (GOS) [14]

shown Figure 11. The DOS technique performs sensor fault detection by assigning a

dedicated estimator to each of the sensors. Each estimator (e.g. a least squares fit of

another sensor output to previous test data or an ARMA model [15]) is driven by only a

single sensor output The output of the estimator, Y', is then compared to the sensor

measurement, Y, to produce a residual r. The residual is then compared to a threshold

limit, _, to determine if a fault has occurred.

The "generalized observer scheme" is similar to DOS except that it is constructed

such that the estimator is driven by all the output sensors except that of the respective

sensor. In theory, the "generalized observer scheme" provides the most accurate

estimate (for a given class of estimators, such as linear regression models) of sensor

output and therefore the best fault detection because it makes use of all available

information in the system. The obvious draw back of the GOS approach is that fault

isolation becomes difficult since a single point failure may cause failure of many

estimators. On the other hand, the "dedicated observer scheme" can easily

accommodate single point and most multi-point failure instances provided the large

number of different PIDs used as the independent variables is approximately the same

as the number of equations.

Parameter Estimation

Two approaches were investigated to generate estimator models for each of the

SSME CADS and facility parameters specified for validation and reconstruction. The first

approach was the use of engine characteristic equations which physically relate

parameters. The second approach was to generate empirical regression equations

based on existing SSME test data. Each of these techniques is discussed below.

Engine Characteristics

Engine characteristics are parameters which describe the performance of a

particular engine and its components (Table 5 shows some examples of engine

characteristics). The set of characteristics for an engine form a "fingerprint" which

describes the engine's idiosyncrasies relative to all other engines in the same family

tested thus far.
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Line Resistance

Pump Affinity

Pump Affinity

C*

Table 5. Typical Uquid Rocket Engine CharacterisUcs

_P/(Density Flow 2)

Flow/Speed

Head/Speed 2

PC A t/Row

Characteristics can be computed for every engine and then entered into a

database for comparison with the characteristics from all engines in the family. Any

characteristic which is "out of family" (the largest or smallest value seen, or close to it)

warrants investigation. Armed with the equations for computing characteristics, and the

assumption that only one sensor or component can fail at a given time, analysts can

quickly narrow in on the sources of anomalies. In the example shown in Figure 12, three

line resistances are calculated given readings from three pressure sensors, a

temperature sensor (for computing specific gravity), and a flow sensor. In this example

the two partial resistances R1-2 and R2-3 are out-of-family, while the overall resistance

R1-3 is normal. The only explanation for this, assuming a single-point failure, is that

pressure sensor P2 has failed (i.e., biased high). Had all three resistances been out-of-

family in the same direction (i.e., high or low) then either the temperature or flow sensors

would be suspect.

Engine characteristics provide relatively invariant relationships among small sets

of sensors, thus they are good predictors for use in sensor validation. One approach to

using characteristics for sensor validation is the following:

1. Sample a small segment of data for the engine under test and compute all

characteristics.

2. If any characteristic is out-of-family, then suspect all sensors involved in its

calculation (i.e., there was a possible sensor failure in the initial sample data).

3. The engine's characteristics are computed for each time slice and compared to

the sampled characteristics. If the residual between any sampled and computed

characteristic is larger than a threshold (say 2 sigma), then the sensors involved

in the calculation are suspect.

(See Section 3.3 for a discussion of how these "suspicions" can be integrated into a final

decision regarding sensor failure.)
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To evaluate the approach outlined above for use on the SSME data, 15

characteristics relating 19 non-redundant PIDs were derived and tested to see how well

they would perform as predictors.

To derive the characteristics, SSME flow diagrams were annotated with available

PIDs, and the characteristic relations were then encoded through analysis of these

diagrams. Figure 13 and 16 show examples of annotated flow diagrams along with its

derived characteristics, and Table 6 shows the complete list of characteristics evaluated.

To evaluate whether family-averaged characteristics could be used as predictors,

characteristics were computed for three test data sets at 109% steady-state power levels

(A,?.492, A2493, and A2495). Characteristics were averaged over these three runs and

then used as predictors for a fourth test data set (A2497) at its 109% steady-state power

level. The results of this experiment are shown in columns 3 and 4 of Table 7.

As discussed above, an alternative approach to family-averaged characteristics is

to take a small sample of data from the test set, compute engine-specific characteristics

from this sample, and then use these characteristics as predictors. A second

experiment was performed to evaluate this approach. A sample of the 109% steady-

state data was taken (10 seconds of test A2497) and then used to predict PID values for

the remainder of the 109% steady-state data. The results of this experiment are shown
in columns 5 and 6 of Table 7.

In almost every PID prediction in the two experiments the sampled characteristic

performed significantly better as a predictor than the family-averaged one (i.e., the

residuals-the difference between the sensed value and the predicted value-were larger

for averaged characteristics than for sampled ones). This can also be seen graphically

from plots of sensed vs. predicted PID values. Figure 15 shows a prediction and

residual for PID 1205 using a family-averaged characteristic (LPFP Q/N). Figure 16

shows the same prediction using a sampled, engine-specific characteristic.

A final test was conducted to determine how well characteristic-based predictions

would perform on transient test data. The characteristics sampled at the 109% power

level in the previous experiment (for test A2497) were used to predict PID values during

the first 30 seconds of the same test. Unfortunately, only 5 of the 42 predictions

performed well enough to be usable during transient conditions. Figure 17 shows a

typical prediction whose residual is too large during the transient conditions to make it

usable for sensor validation.

The characteristic model development work is contained in Appendix B.
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Flow- PID1212, 1213

Turbine Speed ,,,PID30

WOE WOT1

WOP1 WOT1
v"= HPOP

Pressure - PID209, 210

Low Pressure Oxygen Pump I Turbine

Characteristic Equation PID Relation

Pump Flow/Speed
Pump AHead/Speed'2

Q/N - Constant
AP/N^2 ,, Constant

P1212/P30 - Constant
(P209-P860)/P30^2 - Constant _

Figure 13. Example of Flow Diagram and Derived Characteristics for Low

Pressure Oxygen Pump/Turbine
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Table 6 Characteristic PID Relations Evaluated

Charactedstic Equation PID Relation

Pump Flow/Speed

Pump _Head/Speed^2

m

Line Resistance

Q/N - Constant

rAP N^2.Conslant

AP/CP2- Con'stanl

P1212/P30 - Constant
P1205/P32 ,, Constant
P133/P260- Constant

(P209-P860)/P30^2 - Conslanl

(P203-P819)/P32^2 - Constant
(P52-P133yP260^2 - Constant

(P90-P395)/P1212"2 - Constant
(P52-P129)/P133^2- Constant
(P52-P17)/P133^2- Constant
(P17-P436)/P133^2 - Constant
(P52-P436)/P133"2 - Constant
(P59-P58)/P1212A2 - Constant
(PP59-P480)/P1212"2 - Constant

Label

LPOP Q/N
LPFP Q/N
HPFP Q/N

LPOP H/N2
LPFP H/N2
HPFP H/N2

,m

HPOP R1
MC R1
MC R2
MC 43
MC R4
PRE R1
PRE R2

(P209-Pg0)/P 1212^2 - Constant
(P209-P395yP1212^2 ,, Constant

HPOP R2
HPOP R3
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Table 7
Results of Steady.State Characteristic Experiments

Predicted
PID

P1212

P209

P860

IX)0

1'395
P1212
P1205

P32
P203
P819

P133
P260
P52
P133

P26o
P52
P129

P52
P]7
P13 
PI7
P436

PI3_
_2
_36

P13_
_9
_8

P1212
1>59
_80

iPl21_
ip2o9
P90

Pill2
P209
P395
P1212

Characteristic
Used

t.POPQ/N

LPOPH/N2

HPOPRI

LP  /N
LPFPH/N2

HI'FPQm

HPFPH/N2

MC RI

MC R2

MC R3

MC R4

PRER1

,i

PRER2

HPOP R2

HPOP R3

Averued Cha
Observed

Residual AvE
4.26E+1

3.00E+0
-3.00E+0

-2.9_E+1
5.45E+0
-5.45E+0

-4.7_1E+1
-6.51E+2

8.57E+0
-8.57E+0
-2.92E+2
-6.18E+0

1._E+I
- 1AgE+ 1

1.48E+1

-_.10E+I
-4.29E+1
4.29E+ 1

1,08E+2
-1.98E+2

1.98E+2

9,09E+2
-73.6E+0
7.26E+0

7.91E+2
-2.05E+2
2.05E+2

9.0_E+2
1.40E+2

-1.40E+2

-I.9_E+2
7.02E+1

-7.02E+1

-].03E+2
2.33E+I

-2.33E+1

1,84E+ 1
2.90E+ 1

-2.90E+1
2.5115+1

'acteristif$
Observed

Residupl_;_;
8.32E+I

7,16E+I
6.94E+0
6.94E+0
6.83E+1
3.14E+1
3.14E+ 1

2,7_E+_
1.25E+2
1.21E+2
4.76E+0
4.76E+0
1,62E+2
8.41E+2

1,8tE+_
1.02E+3
1.02E+3

I,$1E+_
6.71E+1
6.71E+1
1.69E+2
4.58E+1
4.58E+1
2.10E+2
2.43E+ 1
2.43E+1
2.63E+3
4.73E+1
4.73E+1

2.08E+2
6.24E+1
6.24E+1

_,71E+!
5.77E+1
5.TTE+I
8,41 +1
6.83E+1
6.83E+1

_,_9E+I
5.61E+1
5.61E+1
4.86E+1

S_mpled Char
Observed

Residual Ave
- 1.36E+ 1
1.16E+l
6.33E-1

-6.33E-1
-6.19E+0
1.27E+0

-1.27E+0

-I.05E+l
-4A2E+0
4.47E+0
3.70E-3

-3.70E-3
-9.70E-2
-5.18E+I

I.IIE+2
6.93E+1

-6.93E+1
1.17E+2

-1.99E+0
1.99E+0
.0 E+0

-I.20E+0
1.20E+0

,98E+0
-4.94E- 1
4.94D1
8.15E+!

-1.68E+0
1.68E+0
8.03E+0
1.68E+1

-1.68E+ 1
-2.27E+1
1.22E+ 1

-1.22E+1

-I.7_E+l
-I.10E+!
1.10E+I

-8.75E+0
-9.59E+0
9.59E+0

-8.40E+0

tctcriFtics
Observed

Resi_lup! _S
7.98E+ 1
6.81E+1
6.94E+0
6.94E+0

6.78E+1
3.16E+1
3.16E+1

1.2 IE+2

1,22E+2
4.88E+0
4.88E+0
1.62E+2
8.46E+2

1.82E+$
1.04E+3
1.04E+3

1,82E+_
6.62E+I
6.62E+I
1.69E÷2
4.33E+I

4.33E+I
2.16E+2
2.47E+I
2.47E+I

4.45E+1
4A5E+I
2.13E+2
6.04E+1
6.04E+1
8.13E+1
5.63E+1
5.63E+1

6.48E+1
6.48E+1

_,I_E+I
5.33E+1
5.33E+i
4,66E+ 1

PID Rating
(3S)

8.50E+1
5._9E+I
1.20E+I
5.00E+C

.I_9E+!
1.40E+2
2.50E+I

8._0E+1
2.20E+2

1.98E+2
6.00E+C
2.00E+C
1.98E+2
1.69E+2
3.15E+I
1.90E+2
1.69E+2
_.15E+l
1.90E+2
7.00E+ 1
1.69E+2
1.90E+2
1.40E+2
!.69E+_
1.40E+2
5.00E+I
1.69E+:

1.90E+2
5.00E+ 1
1.69E+2
1.90E+2
1.40E+2
8.50E+ 1
1.90E+2
2.0(0+2
8._S0E+!
1.20E+ !
1.40E+2
8.50E+ I

1.20E+ 1
2.50E+ 1
8.50E+1
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Empirical Regression Equations

The principle advantages of linear models are that they can usually be solved by a single

matrix inversion and are relatively straightforward to derive. Linear regression models

have been successfully employed on the Advanced Propulsion Monitoring System

Program [3] to detect sensor failures in jet engines. Unear models of dynamic systems

can display poor accuracy when applied over a wide range of dynamic response,

however during steady state operation of the SSME, linear models appear to work well in

tracking the relatively small amplitude of dynamic perturbations of the engine. A typical

SSME thrust profile is comprised of over 90% commanded steady state operation.

The procedure being followed for developing the regression equations is shown

in Figure 18. "Nominal" test data sets were partitioned into startup, shutdown, 65%,

100%,104% and 109% power levels. The SSME test summaries for the data sets on

hand at Aerojet were reviewed for known sensor failures (summarized in Table 4) and

excluded from the partitioned sets. The steady state data has been further screened to

isolate the data sets during LOX venting, repressurization, and propellant transfer

operations.

Using the partitioned data sets, the one to one correlations between all the

sensors in the CADS data set have been determined using the Matlab software on the

GFE Sun workstation [16]. As expected excellent correlation (correlation coefficient

greater than 0.95) was found between redundant sensor channels and some reasonable

correlation (correlation coefficient greater than 0.5) was found between over half of the

sensors. The sole fact of a high correlation coefficient is not sufficient to guarantee that

a true and significant physical correlation exists between signals. These sensors have

been down selected based on physical reasonableness determined by subjective

reasoning regarding physical interactions of the SSME. A summary of the correlation

coefficients is included in Appendix C.

From analysis of the correlation coefficients, 42 potential linear regression

relationships were identified and evaluated versus SSME data. Test were conducted

similar to those described above for the characteristic equations. First, the coefficients

of the regression models were developed using 'l=amily"data derived from four different

tests at the same power level. Second, the coefficients were evaluated using a small

sampling of data from the beginning of the specific test. The results of these

experiments are summarized below. Typical test results are included in Appendix B.
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Two typical residuals (true signal minus the predicted) generated using "family"

data are shown in Figure 19. In the first example the Heat Exchanger Exit Pressure (PID

34) is calculated as a function of the POGO Precharge Pressure, HPOPT Intermediate

Purge Pressure, and the HPOPT Secondary Seal Cavity Pressure. The equation was

derived from 109% power level data from test A1-619 and tested on 109% power level

data from test A1-620. The residual shows a slight offset from zero which is a common

feature of many of the equations tested. This offset is approximately 10% of the

documented SSME sigma for the parameter. The second example is for the POGO

Precharge Pressure (PID 221) as a function of how many other parameters which

includes its redundant channel. As might be expected, the inclusion of a redundant

channel produces very good correlations with little shift from zero. Equations such as

that in first example appear promising for providing sensor predictions considering no

redundant parameters were included. Equations which include redundant channels

such as the second example are heavily weighted by the redundant channel and will

work for data validation and reconstruction only when the sensor failure mode is such

that the loss of one sensor channel does not influence the other sensor channel (e.g.

poor cable connection). These results often show a fixed offset of the signal

representative of the variance of the particular engine to the family. This offset can not

be predicted a priori and may trigger false alarms in a simple fault tree logic isolation

scheme.

The use of engine specific data to generate the regression equations yielded

more accurate models. The regression coefficients were derived using a 2 second (50

data points) time slice at the beginning of a given steady state portion of the test. Using

sampled data from the beginning of the steady state time slice virtually eliminates the

offset because the coefficients of the equations are calibrated for the particular engine.

Of the empirical equations evaluated, 28 equations yielded a standard deviation less

than that of each of the variables and significantly less than the family two sigma

database. Figure 20 shows two typical examples of the linear regression equations

derived by sampling the power level.

Conclusions Of Parameter Estimation

Engine characteristic and empirical equations provide a good source of analytical

redundancy. Although only a small set of all potential relations have been evaluated, a

larger set covering most of the PIDs on the SSME should be derivable. Table 8

42



4O
34

3O

2O

.g

10

20.5 210 215 220 225 2.30 235 240

(_)

221

'1
6

4

"_ 2O5 210 21.5 220 225 230 235 240

Thne (sec)

Figure 19. Example of Familly-Averaged Regression Results
Nonredundant and b) Redundant Parameters Included

With a)

43



NAS 3-25883

summarizes the CADS PIDs (based on the sensor set selected for validation) for which

characteristic and empirical equations have been developed. In addition, PIDs for which

hardware redundant channels are available are also indicated. In summary:

Characteristics and empirical equations computed from samples of data from the

engine being evaluated work better than family-averaged ones.

Sampled equations can be checked for reasonableness by comparison to a

database of family characteristics.

The characteristic and empirical equations work better during steady state

operation than during engine transients.

Fault Detection

Once a set of equations (empirical or characteristic) have been developed for the

sensors, fault detection is accomplished by comparing the true signal to the prediction.

If the resulting difference (the residual) exceeds a predefined threshold value then a

failure of the equation is declared. The cause of the equation failure may be a failure of

any of the sensors in the equation. Figure 21 illustrates how a residual could violate

predefined thresholds, each of which represents a different confidence level as to the

existence of a failure. If the three threshold levels are taken to be the standard deviation

of the residual computed from nominal data, then the probability of failure could be

assigned by assuming Gaussian statistics. Spikes in the data which tend to cross the

threshold level for only a single cycle can be filtered from true violations of the threshold

limits by applying statistical tests.

Statistical hypothesis tests can be used to define detection limits for sensors

measuring well-behaved random data. The most common hypothesis tests are

concerned with the mean and standard deviation of a normal distribution. If the data of

interest is approximately normally distributed or if the data can be transformed into

approximately normal random variables, such hypothesis tests could be applied directly.

Detection limits could be established either to one side or to both sides, using standard

methodology, and the probability of false alarm and the probability of detection could be

rigorously determined. The one-sided binomial confidence limit can be used with

sequences of observed exceedances of the detection limits to interpret the significance

of the exceedances. If the exceedances are interpreted as not being false alarms, the

sensor can be confidently classified as failed.
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In any hypothesis test, two types of errors are possible. The Type I error is

rejecting the hypothesis when it is true. The Type II error is accepting the hypothesis

when it is false. If the null hypothesis is defined as the condition that the sensor and the

relevant component are functioning properly, then the probability of the Type I error is

the probability of false alarm. This probability may be determined whether there is one

detection limit (one-sided test) or two detection limits (two-sided test). In most cases of

sensor failure detection, the two-sided limit test would be the correct one to use.

Similarly, the probability of the Type II error is the complement of the detection

probability.

For a particular application, as the probability of false alarm is decreased, the

probability of detection is also decreased. The detection limits must therefore be set with

appropriately balanced values of these two probabilities. If the probability of false alarm

cannot be made negligible, additional logic may be used to interpret the observed

exceedances relative to the theoretical probability of false alarm. Appropriate

methodology for the interpretation of the observed exceedances is the one-sided

binomial confidence limit.

Fault Isolation

Following the occurrence of a detected parameter fault (i.e. a failed equation), the

failed PID(s) must be isolated. An approach suitable for the SDV&SR system is based

on fault tree logic [3]. In this scheme, a system of equations for the SSME sensor is

specified such as that shown in Figure 22. An incidence matrix which codes the

occurrence of independent and dependent parameters in the model is then constructed.

Rows of the incidence matrix correspond to the equations and each column of the matrix

represents a PID. The matrix is built by entering a one if a PID is present as an

independent variable in an equation or a zero if it is not as shown in Figure 22. Each

column of the incidence matrix represents a fault detection vector for its specific PID as

shown in Figure 22. If the threshold limits are set such that a failed PID causes a failure

of all equations in which it appears with equal probability, then single point failure

detection can be isolated by comparing the vector of failed equations to the each of the

fault detection vectors for a match. The ability to isolate multi-point failures is dependent

on the specific structure of the incidence matrix (i.e. the system of equations).

5O



Step 1. Define Model: Example 8 equations (2 based on
hardware redundancy) 12 Parameters

Model #

1

2

3

4

5

6

7

8

llEX DS PR

OPOV ACT POS Cil A

FPOV ACT POS Ctl A

I'BP DIS PR Cil A

PBP DIS TEMP Cll B

LPOP DIS PR Cll B

LPOP DIS PR C! ! A

PBP DIS TEMP Ci i A

P/D 34 = fac(40,59,210,221.234)

PID 40 - fnc(59,94,210)

PID 42 - fnc(40,59,94)

PID 59 = fnc(58.94,210)

PID 94 = fac(40,42,59,210,234)

PID 210 = fnc(34,90)

PID 209 = fnc(210)

PID 93 = f.c(94)

Figure 22. Fault Tree Logic for Isolating Sensor Failures
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2.2.4 Pattern Matching Techniques

Those sensors whose status cannot be effectively determined using linear or non-

linear regression techniques, or engine characteristic equations, can be analyzed using

pattern matching tools. Areas of potential application include start, shutdown, and

power level transients, as well as thermal drifts and other highly non-linear phenomena.

Pattern clustering appears to be a good candidate for the reconstruction of data which

cannot be accurately reconstructed by using regression or engine characteristic

modeling. Pattern matching techniques fall into two basic categories: pattern matching

algorithms and artificial neural networks. Even though the mechanics of the two

methods are different, the resultant output is similar for both. Neural networks are useful

for both sensor validation and data reconstruction purposes and have been

demonstrated with SSME data [17].

The two primary types of pattern matching algorithms are categorized as

decision-theoretic and semantic. For this study, only the decision-theoretic algorithms

were investigated. This family of algorithms operates roughly as follows: An exemplar

pattern of interest is input to the algorithm, along with a sample test pattern. The

algorithm reduces the two patterns into their respective vector components and

computes the matching score between the two. The matching score is a statistical

measure of the relative likeness between the vectors. This technique can be used to

validate sensors in the following manner: patterns of data, such as the startup transient

of the MCC pressure, which are known to be good, can be input into the algorithm as

sample exemplar patterns. As more samples are used to train the algorithm, the

algorithm is increased. Once the algorithm has "learned" the pattern, suspect data (data

where no validity determination has been made), can be input into the algorithm. The

matching score is then computed, and if it falls below a predetermined threshold, the

sensor (in this case PID 130) is classified as failed. The most well known of the decision-

theoretic algorithms is the K-nearest neighbor classifier [18, 19, 20]. This algorithm

works on the principal that the probability of any particular point being part of the pattern

of interest is directly proportional to a specified number of points nearby (10, and

inversely proportional to the sample space volume containing k number of points.

Artificial neural networks appear to be good candidates for both sensor validation

and data reconstruction. Neural networks are a highly parallel computational

architecture which is roughly modeled on the physical structure of the brain. The basic
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building blocks of all artificial neural nets are layers of nodes (neurons) which have

weighted connections to other nodes. A number of specialized architectures, in which

the number and configuration of inputs, nodes, layers, connections, and outputs are

varied, have been developed for a variety of specialized purposes [21, 22, 23].

Connection weights can either be variable or fixed, depending on which particular

architecture is selected. Nodes in a particular layer can be connected to specific nodes

in the adjacent layers, or they can be connected to all of the nodes in adjacent layers

(fully connected). The first layer of nodes in any net is called the input layer, the last

layer is called the output layer, and all intermediate layers are called hidden layers. In the

case of a two layer network, one input is presented to each of the nodes in the first layer.

Each of the inputs is then output to a node in the following layer as the product of the

original input value and the appropriate connection weight. These products are then

combined algorithmically by the second node (known as a processing unit) and that

output is compared to a target value. The difference of the two is the residual error. As

in algorithmic pattern matching, if the residual error is within the required threshold, the

computation is complete and the final output, in this case a sensor signal, is considered

good. If not the connection weights are modified algorithmically, and the neural net

process is repeated, and continues until an acceptable residual error level has been

reached.

For the purposes of pattern recognition and data reconstruction, the best neural

net architecture appears to be the multi-layer perceptron [22]. This architecture is better

known as the back-error propagation or simply the back propagation network. This

name refers to the algorithm which is used to reset the connection weights after each

complete pass through the network. Figure 23 shows a flowchart representation of this

architecture. The perceptron has variable connection weights, is fully connected

throughout, and uses supervised learning. For the complex pattern matching and data

reconstruction tasks on this program, at least four layers of nodes (two hidden layers)

are desirable. The number of nodes in the hidden layers should be three times the

number of input nodes, so that sufficient pattern definition is achieved [22]. This

approach is identical to that taken by Guo and Nurre, who were successfully able to

diagnose a simulated SSME sensor failure and reconstruct the lost data [17].

Another architecture which appears to have promise for pattern classification is

known as competitive learning [21]. This architecture is very similar to the multi-layer

perceptron, except that the former uses unsupervised learning, and only the weight of
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the highest valued or "winning" output node is modified during the recursive phase of the

process. This process continues until the value of the "winning" node no longer

changes.

Due to the complexity of both the neural network and pattern matching/pattern

clustering approaches to sensor validation and reconstruction, designing and

implementing either system from scratch is relatively resource intensive. There are

several commercial software products, representing both pattern matching paradigms,

which are currently available and listed in Appendix D. These packages contain

networks or algorithms which can perform pattern classification tasks.

3.3 Knowledge Fusion Approaches

As shown in the previous section, there are several possible sources of

information about a PID's failure (Table 9 summarizes the sources of information that

have been investigated so far). Given all of these pieces of information about a sensor,

which may be conflicting and have varying degrees of uncertainty associated with them,

the sensor validation system must be able to make (and justify) a decision about the

status of each sensor. This is the problem addressed by a sub-discipline of Artificial

Intelligence referred to as information fusion (also known as evidential reasoning or

reasoning with uncertainty ).

Information fusion involves the combination of evidence from several sources into

a single, consistent model. Uncertainties in the sources of evidence (i.e., inaccuracies in

the sensors or uncertainties in the fault detection algorithms themselves) are explicitly

modeled and accounted for. There is a spectrum of information fusion techniques

available, ranging from computationally efficient but unsound approaches, to those

guaranteeing semantically correct results but having a high computational overhead and

implementation complexity associated with them. In addition, for any given technique

chosen there are typically many algorithms available for implementation. The following

section will describe and evaluate the four most popular techniques currently used for

information fusion, and evaluate which is the most appropriate for use in the sensor

validation system.

Survey of TechniQues

Four approaches to information fusion were evaluated for the sensor validation

system. These approaches were selected based on their frequency of use in fielded

systems and their mention in the literature. These measures of popularity indicate the
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degree of confidence held in the techniques by the Artificial Intelligence community.

These techniques have also been in use long enough to ensure their maturity: The

MYCIN approach was developed in the 1970's; Dempster-Shafer theory was developed

in the 1970's and has seen wide use and mention in the literature in the 1980's; and the

Bayesian Belief Network approach was developed in the 1980's, although its foundation

can be traced to the roots of probably theory (1500's).

Binary Logic represents the most common approach to information fusion, and involves

decision-making based on hard-coded rules, such as those in NEXPERT. Examples of

such rules are:

Voting redundant sensors.

Redlining (thresholding).

Fixed prioritization of sources of evidence. For example: "If two physically

redundant sensors differ by more than a threshold amount, then suspect the one

with lower variance."

Fault tree isolation logic.

Binary logic does not address uncertainties in the sensors or the sources of

evidence. More importantly, it is highly susceptible to making wrong decisions (false

alarms or undetected failures) since exhaustive enumeration of all possible exceptions to

rules is extremely difficult, if not impossible 1. The major advantages to binary logic are its

computational efficiency and ease of implementation (once the rules have been defined).

MY(_IN Certainty_ Factors

Several attempts have been made to add the capability to reason with uncertainty

to rule-based systems. One example of such an approach is MYCIN certainty factors 2

MYCIN is a rule-based medical diagnostic system. In order to address uncertainties

both in the observation of symptoms and in the diagnostic rules themselves, the

developers of MYCIN devised an ad-hoc technique for representing and reasoning with

uncertainty which could be layered onto their rule-based approach. This approach can

be summarized as follows:
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Table 9. Sources of Information about Sensor Failures

I I

A-Priori Knowledge about
Likelihood of Failures

Reliability of Sensor Class
Sensor Failure History
Sensor Time in Service
Pre- and Post- Test Calibration

I IJ L I

Reasonableness Checks
Red, Yellow, and "Reasonable" Lines

Rate of Change
Standard Deviation

II i

Signal Analysis
Moving Average
Time Series

I

Analytical Redundancy
Empirical Correlation Models
Engine Characteristic Models

I ii I

Physical Redundancy
Alternate Sensors

III

Known Failure Mode Analysis
"Universal" Failure Modes

Hard Open Circuit
Intermittent Open Circuit
Short Circuit / Shutdown

Spikes

S_tced and Flow Sensors
Aiiasing

Pressure Sensors
Thermal Drift
Overshoot
Loss of Reference Vacuum

Temperature Sensor_
Thermal Expansion

i ill
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Each proposition (fact) in the knowledge base has a certainty factor associated

with it, which is a real number between -1 (indicating that the fact is definitely

false) to + 1 (indicating that the fact is definitely true).

Each rule has an attenuation, a real number between 0 and 1, indicating the

uncertainty in the rule (a value of 1 indicates that if the rule's antecedents are

known with absolute certainty, then the rule's consequents can be concluded with

absolute certainty).

Given antecedents al, a2, , an, and a consequent c for a rule:

Certainty[c] = Minimum(Certainty[a 1], Certainty[a2J,...Certainty[an ] )

Attenuation

If two rules assert certainty factors for the same proposition, the resulting certainty

factor is found by:

x + y-xy ifx, y > 0

(x + y)/(1- Minimum(x,y)) ff x,y different sign

x + y + xy if x,y < O

Where x and y are the certainty factors assigned by the two rules.

This approach is better than binary logic in that it attempts to deal with uncertainty

in an explicit way, and provides a means for combining multiple sources of evidence. As

with binary logic, this approach is also computationally efficient and straightforward to

implement (it can easily be added onto a NEXPERT rule base). However, since the

approach is based on ad-hoc formulas there are cases in which it will produce non-

intuitive results.

One case in which it will give incorrect results is when the sources of evidence

contributing to a proposition are correlated. An example of this from the Chernobyl

disaster is shown in Figure 24 (the example is due to Henrion3). Pearl says about this

example, "Multiple, independent sources of evidence would normally increase the

credibility of the hypothesis (Thousands dead ), but the discovery that these sources

have a common origin should reduce the credibility. Extensional systems are too local

to recognize the common origin of the information, and they would update the credibility

of the hypothesis as if it were supported by three independent sources. '4

Dempster-$hafer Theory

The Dempster-Shafer theory of evidential reasoning 5 has experienced a wide
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popularity in the Artificial Intelligence community in the last 10 years. In contrast with

approaches such as MYCIN certainty factors, it is a mathematically sound approach.

The Dempster-Shafer formalism maintains a body of evidence about a set of

mutually exclusive hypotheses (in sensor validation, the hypotheses would be of the

form PIDi_.Failed ). In this theory, a source of information can assign probabilities to

disjuncts of hypotheses. For example, if evaluation of the engine characteristic

LPOPH/N2 = (P209-P860)/P30"2

at a particular time point indicates that the characteristic is anomalous (e.g., the residual

is greater than 3 sigma), the following probability assignment could be made:

Confirm({p209,p860,p30}, 0.9)

This assignment indicates that either P209 or P860 or P30 has failed with a 0.9

probability. A formal method, Dempster's Rule of Combination, exists to combine two

statistically independent bodies of evidence formed by statements of the form shown

above. Once all sources of evidence have been combined, the Belief and Plausibility of

any disjunction of hypotheses can be found.

Belief in a hypothesis is the probability that a logical proof for the hypothesis

exists (i.e. if evidence assignments are interpreted as constraints, this is the

probability that the constraints allow the hypothesis to be deduced). This can

also be interpreted as the degree to which the evidence supports the proposition.

Plausibility of a hypothesis is the probability that it is compatible with the evidence

(i.e. the probability that it cannot be disproved and is therefore possible). Thus,

this is the degree to which the evidence fails to refute the proposition.

Plausibility(H) = 1 - Belief(H)

Thus, once all sources of information about a sensor have been combined, the Belief in

each sensor's failure hypothesis could be examined and acted upon if over some

threshold.

6O
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Dempster-Shafer Theory has several disadvantages when applied to the sensor

validation information fusion problem:

The theory assumes that all sources of evidence are statistically independent (this

is not true if any PIDs are used in more than one test).

The theory assumes that exactly one of its hypotheses is true; thus, it will not

detect multiple-point failures. (However, if the method is used for every time slice

of data this should not be a problem, since the probability of having more than

one failure at a given instance is extremely small.)

Each application of Dempster's rule can be computationally very expensive.

Direct implementation is exponential in the number of hypotheses, although

approximate solutions have been developed.

Finally, Dempster-Shafer theory is good for reasoning about problems in which

constraints are stated explicitly, such as in design or planning, since the objects

that are reasoned over are constraints among its hypotheses.

Bayesian Belief Networks

Bayesian probability theory, like the Dempster-Shafer theory described above, is

mathematically sound. However, prior to the development of graphical representations

and efficient network solution algorithms, its application to non-trivial problems (with

more than a few dozen random variables) was extremely awkward if not intractable.

Graphical representations of joint probability distributions provide a very intuitive

knowledge representation format, and the Bayesian network formalism allows the

requisite probabilities to be specified in a very concise and painless manner.

A Bayesian network consists of nodes which represent discrete-valued random

variables. Examples of such nodes in the sensor validation system are shown in Figure

25. The node/random variable-P209-represents the current state of PID 209, and can

be in one of five mutually exclusive states: OK, Hard_Open, IntermittentOpen, Drift, or

Bias. Associated with this node is a probability distribution which describes the

probability of the node being in each of its possible states given all available information.

The LPOPH/N2 node represents the outcome of the engine characteristic test:

LPOPH/N2 = (P209-P860)/P30"2
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This is computed from a time slice of data and compared to a sampled baseline

characteristic. The states for this node represent the residual from comparison, and

thus the outcome of the test.

Directed arcs lines between nodes in a Bayesian Belief Network represent

influences. In particular, an arc from node A to node B indicates that knowledge of node

A's state can change the probability distribution for node B. Figure 26 shows the three

arcs influencing node LPOPH/N2, namely those coming from the three PIDs involved in

the test (a change in the status of any of the PIDs involved can change the outcome of

the test). The nodes and arcs in a Belief Network must form a Directed Acyclic Graph

(DAG), that is, the nodes can be connected in any manner as long as you cannot start at

a node and get back to the same node by following directed arcs through the network.

Once the topology of a network has been defined, two types of probabilities must

be specified to complete the network. First, all nodes which do not have any influencing

arcs (i.e., no arcs coming into them) must have default probability distributions for their

states defined (P209 in Figure 27 shows an example of this). In the Belief Networks used

for sensor validation, these nodes typically represent random variables specifying the

status of each PID. The default probability distributions would be obtained from

historical reliability data for each sensor (e.g., PID xyz has exhibited a 0.99 reliability over

the last 30 tests with a 0.005 probability of failing hard open circuit and a 0.005

probability of failing by drift), coupled with time in service, and pre- and post-test

calibration.

Second, every node which has influencing arcs must have probability distributions

conditioned on the states of their influencing nodes specified (see LPOPH/N2 in Figure

27). In the Belief Networks used for sensor validation, these nodes typically represent

random variables specifying the outcomes of diagnostic test. The probabilities

distributions can be obtained analytically by analysis of each test used.

A fully specified Belief Network can be used to answer queries in the following

manner:

1 ."Observables" are instantiated (in the example above, this consists setting the state

of the LPOPH/N2 node to reflect the test outcome).

2. A network update algorithm is run. 6,7,8

3. The probability distributions of nodes of interest are examined (in the example
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Test States

• Residual < ls

• ls < Residual < 2s

• 2s < Residual < 3s
• Residual > 3s

PiD Status States

• OK

• Hard Open

• Intermittent Open
• Drift

• Bias

Figure 25. Example Bayesian Belief Network Nodes
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TEST 1
P209

Figure 26. Example Belief Network Influences
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above, this consists of examining the distributions for P209, P860, and P30 to see if

the probability of any fault state exceeds a threshold).

The major advantage of Bayesian Belief Networks is that they are the most

semantically correct way to perform information fusion. For analysis problems such as

diagnosis, Bayesian probability theory is better suited than the Dempster-Shafer

approach, since the objects that it reasons over are probabilistic models (there are no

explicit constraints known a-priori). 9 However, the Belief Network solution algorithms

can be complex to implement and computationally expensive.

Evaluation of Techniaues

Table 10 shows the results of a trade study on the four techniques discussed

above for use in sensor validation information fusion. In the trade, the "soundness"

criterion was given the highest weighting because the whole purpose of information

fusion is to give the best possible evaluation of all sources of information. The "Ease of

Implementation" criterion includes not only implementation of the fusion algorithm, but

the encoding of all requisite knowledge to perform the sensor validation information

fusion task (i.e., specification of probabilities, certainty factors, logic rules, etc.). Based

on this trade, Bayesian Belief Networks are the recommended approach to information

fusion for sensor validation.

AoDlication tO Sensor Data Validation

Figure 28. shows how all of the information available about the state of P209

(LPOP discharge pressure) might be integrated using Belief Networks. Given the

research performed in Phase I, it is known that P209 can be evaluated by two

characteristic tests (LPOPH/N2, HPOPR2), by an empirical test (relating P209 to P211

and P91), by range tests (e.g., 2sigma bands), by pattern-matching techniques which

look for specific failure modes such as spikes and drifts, and by comparison to P210

(channel B). In addition, information about P209's failure history, time in service, pre-

and post-test calibration, and the reliability of the transducers used to measure LPOP

discharge pressure can be combined into an initial probability distribution for P209 and

combined with the evidence gathered for each time slice of the test data analyzed.

The specification of the Belief Networks needed should be very straightforward. A

preliminary analysis of the networks required indicates that most of the probabilities, and
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p(LPOPH/N2 State I P209 State, P860 State, P30 State)

p(Residual<3sigmalP208=OK, P90=OK, P1212--OK)
p(Residual;_3sigmalP208=OK, P90=OK, P 1212-OK)

i_(Residual<3sigmalP208=oK, P90=OK, P1212=Failed)
p( Residual_>3sigmalP208=OK, P90=OK, P 1212-Failed)

p(Residual<3sigmalP208=oK',P90-Failed, P1212-OK)
p(Residual>3sigmalP208=OK, P90=Failed,P1212-OK)

p(Residual<3sigmalP208=OK, P90=Failed,P1212-Failed)
p(Residual>3sigmalP208=OK, P90=Failed, P1212-Failed)

Etce • m

0.997
0.003

0.500
0.500

0.100
0.900

0.100
0.900

P209
States:

132O9
TEST 1 OK

1=30 Failed

Default
Probability

0.99
0.01

Figure 27. Example Belief Network Probability Specification
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possibly the network topology itself, can be automatically compiled from descriptions of

the various sources of information (e.g., engine characteristic and empirical PID

relations).
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4.0 System Software Specification

4.1 Scope

4.1.1 System Objective

The major objective of the Sensor Validation system is to automatically detect

sensor malfunctions in the SSME test data, and to reconstruct the data for any

malfunctioned sensors using alternate sources of information. The system will run in two

major stages; an initial batch processing mode, followed by an interactive post-

processing mode (see Figure 30). In the batch mode, the sensor data from the SSME

test (in engineering units) is thoroughly analyzed by the sensor validation system, with

PID failures flagged and PID value reconstructions automatically run. The purpose of the

interactive mode is to allow analysts to quickly understand the results of the batch mode

processing, and either confirm or override the failure and reconstruction decisions made

by the sensor validation system.

Bet_h Processing Mode

In the batch processing mode the SSME data is analyzed and acted on according

to three user-specified thresholds:

Report threshold the system will write a report whenever the estimated

probability of any sensor failing crosses this threshold (in either direction). The

report will be produced in two parts: a brief summary stating which PID(s) changed

state and when, and a detailed report describing how the system arrived at the

estimated probability.

Reconstruction threshold - the system will reconstruct the value for a sensor using

alternate sources of information whenever its probability of failure exceeds this

threshold. If several viable methods for reconstruction exist, the system will pick the

method with the highest probability of being correct (based on the failure

probabilities of any other sensors involved in the reconstruction and the accuracy of

the method).

Failure threshold-when a sensor's probability of failure exceeds this threshold, the

system will assume that its value cannot be used to cross-check other sensors or in

reconstruction of other sensor values.
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Although users are free to set the thresholds at any values, it is expected that

typically the following relative settings will be used:

Report < Reconstruction < Failure

Using these settings, the system would typically generate reports whenever a

sensor exhibits any questionable behavior. Additionally, reconstructed values will be

produced in cases when the system does not conclude that the sensor has failed, but

simply derives an unusually high probability of failure. Thus, the user still has pre-

computed reconstructed values to use in case he or she overrides the system's

judgement about the failure status of a sensor.

Batch mode processing is expected to take place immediately following an SSME

test, with results available within an hour for use by the rest of the Life Prediction System

and for use in Interactive mode analysis. Thus, this processing will not exceed one hour

in duration on a Sun SPARCStation.

In batch mode, all sources of available information will be analyzed and fused to

reach the best possible decision about the status of a sensor. The tests incorporated

into the initial version of the sensor validation system will include:

Empirical models

Characteristic models

Red-line test

Sensor class reliability

Sensor failure history

Some form of pattern-matching

Comparison with redundant channels

The system will be constructed in such a way so that tests can be added or

modified with minimum effort. Bayesian Belief Networks will be used as the approach to

information fusion. An approach to specifying the networks will be developed which

minimizes the effort required to define the network(s) required and the associated

probabilities.

In addition to flagging sensor failures and performing reconstructions, the batch

mode software will determine the best source of information to use for each physical
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measurement (e.g., channel A, channel B, reconstruction method 1, reconstruction

method 2, family-averaged historical value, etc.). This designation can then be used by

other modules in the SSME Life Prediction system (e.g., expert diagnostic modules) so

that they only need to look at a single source of data for each measurement and not

concern themselves with evaluating the different possible sources of information. Thus,

this provides a form of data reduction for the entire Life Prediction system.

Interactive Post-Processing Mode

The Interactive post-processing mode is intended to provide an analyst with an

environment in which he or she can quickly understand the conclusions reached by the

system during its batch processing, and either confirm or override the decisions made

by the system. The analyst will also be able to display arbitrary PID value vs. time plots,

and run any available reconstruction algorithm. The interactive software will make

maximum use of a mouse-driven, color, graphical user interface to convey the sensor

validation system's results as efficiently as possible, and to minimize the analysts'

learning time.

The post-processing software will have three main displays (in addition to a "main

menu" for specifying test numbers, top-level operations, etc.). The first display will show

a color plant diagram of the SSME with icons representing all CADS PIDs (see Figure

30). Sensors which had been flagged as failed during batch processing (according to

the failure threshold) will be highlighted on the display. This display gives the analyst a

quick, global view of problems detected by the sensor validation system. In addition,

the highlighting can reflect a single instant in time during the test, and the analyst will be

able to move a scrollbar along the bottom of the display to advance forward or backward

in time to get a quick feel for the chronology of events during the test. If a PID icon is

clicked on with the mouse, a pop-up window will appear showing a brief summary of the

PID's status. Further, if this window is clicked on a justification display will appear to give

a complete description of the sensor validation system's evaluation of that PID at the

indicated time.

The justification display is the second main display in the interactive system (see

Figure 31). When requested by the analyst, a display will appear showing a verbal

description of the evaluation of a PID at a specific time, and any supporting graphics

(e.g., plots) will also be displayed.
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Figure 32. Interactive Justification Display

r

PIT
PI8
P21
i'24
P30
P32
1,34
P36
P38
P40
P42

Figure 33. Interactive PID Matrix Display
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The third main display in the interactive system is the "PID Matrix" (see Figure 32).

This display shows a concise summary of the system's conclusions and

recommendations, and allows the analyst to override any of the entries. Each PID is

displayed on a timeline, with the color of the display indicating the status of the PID (e.g.,

green for OK, red for failed). Although the initial display represents the validation

system's batch mode conclusions, the user can click the mouse on any segment of the

display and modify the status of the sensor. Additionally, if the sensor is declared failed,

the user can specify the reconstruction method used and whether a UCR should be

generated or not.

Once the analyst OKs the PID Matrix, the sensor validation system automatically

assembles a test data file with all selected reconstructions, generates all requested

UCRs, and generates a final report. The report includes the justifications for all failed

sensors (including text and graphics), and is editable by the analyst using SunWrite.

Global Objectives

In addition to the objectives mentioned above, the following objectives apply:

Although the Sensor Validation system will eventually have to interact with the

Session Manager to obtain its data and to interface with the user, it will initially be

designed as a stand-alone system since it is the first module in the SSME Life

Prediction system planned to be completed. However, a clear migration path

from standalone to embedded processing will be maintained.

The sensor validation system will be designed so as to minimize the effort

required to modify engine data (e.g., PID lists, sensor specifications, sampling

rates, etc.).

The sensor validation system will be kept as engine-generic as possible so as to

minimize effort in porting the system to a different engine (e.g., the SBE).

4.1.2 Hardware

The sensor validation system will be implemented on a Sun SPARCStation.

4.1.3 Software

The sensor validation system will

languages, tools, and environment:

Operating System: Unix

be implemented using the following software
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Procedural Language: C

Expert System Shell: NEXPERT Object

Windowing/Graphics System: Motif or Dataviews

CAE Package: PV-WAVE

4.1.4. Human Interface

The human interface to the system will provide a graphical, mixed-initiative

interface to the set of tools that the sensor validation system provides. Point-and-click

functionality will be used throughout (including the use of pop-up menus) to initiate all

functions so that the analyst does not need to remember commands and their

parameters. Different activities (e.g., plant display, justification, default modification, etc.)

will take place in separate windows so that the user can visually cross-reference

information when desired. A mixed-initiative interface will be used so that at any time

either the system can lead the user (e.g., with a suggested action or a query) or the user

can direct the system (e.g., with a new command or volunteered information).

The display format of data (e.g., test data plots) will adhere as closely as possible

to the formats used in current hardcopies to minimize the users' effort in orienting to the

system.

The user will be able to index PIDs either by PID number, by Rocketdyne number,

by label (e.g., "MCC COOLANT DISCH PRESS CH AI"), or by clicking on the

appropriate plant display icon.

Stylistically, the system will adhere to the OPEN LOOK Graphical User Interface

specification through the use of Sun's OpenWindows window system.

4.1.5. Major Software Functions

Batch Mode

Import and partition Engine Test Data. The system will import test data from an

Ingres data base and partition it into steady-state and transient intervals.

Import PID Reliability and Failure History. The system will import the failure history

for all PIDs and the reliability figures for all PIDs from an Ingres database, and

integrate this information into its decision about the status of PIDs.
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Import Family-Averaged Models. The system will import all summarized

characteristic and empirical (regression equation) information about previous

tests from an Ingres database, and integrate this information into its decision

about the status of PIDs. This information includes:

True Engine Characteristics.

Empirical model constants.

PID value means and standard deviations as a function of power level (for

computing yellow and red-lines, and as a "last resort" method for reconstruction).

Assess sensor status. The system will determine the probability of each PID's

likelihood of failure at each time point in the test data.

Report sensor failures. Whenever a sensor's probability of failure exceeds a user-

specified Report Threshold, a brief statement will be output to a Batch Report file,

and a detailed justification of the probability assessment will be output to a

Justification Data file. The Justification Data file can not only contain textual

descriptions, but specifications for generating supporting plots as well.

Reconstruct sensor values. Whenever a sensor's probability of failure exceeds a

user-specified Reconstruction Threshold, the system will reconstruct the sensor's

value from that time point until the end of the test using alternate sources of

information. There are different thresholds for reconstruction and failure to

support efficient interactive processing, so that an analyst can use reconstructed

data for a "borderline" sensor, even though the system did not declare it as failed.

If several viable reconstruction methods exist, the system will pick the one with the

highest probability of being correct (based on the failure probabilities of any other

sensors involved in the reconstruction and the accuracy of the method). Once

reconstruction has started, the method used may be changed dynamically as the

probability of other sensors (i.e., those used in the reconstruction method)

change. All reconstructed data will be output to an Ingres database.

Conclude sensor failure. Whenever a sensor's probability of failure exceeds a

user-specified Failure Threshold, the system will not use the sensor's value in any
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further reconstructions or cross-checks for other sensors. In addition, a brief

statement describing the failure will be output to the Batch Report for use in the

Interactive Mode.

Generate Engine-Specific Models. Characteristics (as described in the Import

Family Characteristics function above), empirical model constants, and mean and

2-sigma values, computed and averaged per power level for the engine under test

will be written to an Engine Characteristics Ingres database.

Select best source of information. For each physical measurement (e.g., PC,

LPFP DISCH PRESS, etc.), the system will determine the best source of

information at every time point based on its sensor analyses. The sources may

include not only redundant channels, but any available reconstruction methods.

This information will be output to the Batch Report file.

Generate validated data set. When this option is selected at the start of the batch

mode processing, the system will assemble a final validated data set, integrating

real and reconstructed values according to the user-specified Failure threshold

(i.e., whenever the probability of a sensor's failure exceeds this threshold it is

replaced with the best reconstruction method available).

Interactive Mode

Display PID Matrix. The system will display a graphical matrix indicating the

assessed status of each PID at each time point in the test (e.g., a green bar will

indicate that the PID is functioning normally, while a red bar will indicate a failure).

When an entry is clicked on with the mouse, a popup window will appear showing

a brief summary of the PIDs status and, if a failure is indicated, the reconstruction

method used and whether a UCR will be issued or not (see Figure 32). The

matrix will be initialized from data in the Batch Report, but the user can modify any

of the entries via the popup window. If the user changes a PID's status, all

ramifications of this must be determined by the system (in particular, if the user

declares a PID as failed, then any reconstructions based on that PID must be

invalidated). In addition, the popup window will have a "Justify" button which will
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cause a justification for the system's assessment to be displayed if it is clicked on

(see Display Justification below).

Display plant summary. The system will display a picture of the SSME plant

diagram with all PIDs depicted by icons which indicate assessed status (e.g., a

red icon will indicate a sensor failure, while green will indicate that the sensor is

OK). The plant display will have two modes: summary and chronological. In

summary mode the maximum failure probabilities over the duration of the test will

be used for the icon display (i.e., the display indicates the worst-case status of all

PIDs over the duration of the test). In chronological mode, the user will be able to

step forward or backward through the test time by moving a scrollbar along the

bottom of the plant display (see Figure 31) with the icons updated so as to

display their status at that point in the test. If an icon is clicked on, a summary of

its status over the duration of the test will appear in a pop-up window. If one the

entries in this summary is clicked on, a justification for the system's assessment is

displayed (see Display Justification below). The plant summary is generated from

information in the PID Matrix.

Display Justification. The system will display the justification data for a given PID

assessment when requested by the user. The justification information will be

imported from the Justification Data file generated during batch mode. Text and

supporting graphics (i.e., plots) will be displayed in separate windows.

Plot Generation. The system will plot any PID value, reconstructed PID value, or

any combination of these over any requested time interval. If a reconstruction is

requested which was not run during batch mode, the reconstruction is run

immediately using information from the engine test data, and the family and

engine characteristics databases.

Authorization. Once the user is satisfied that the PID Matrix is correct, he or she

can authorize the system to complete its processing. This includes the following

functions:

The system generates all UCRs specified in the PID Matrix.
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The system updates the Failure History database according to the sensor failures

indicated in the PID Matrix.

The system updates the Family Characteristics database using the information in

the Engine Characteristics database output in batch mode, and using information

in the PID Matrix to determine what should not be updated (due to sensor

failures).

A final report will be generated. This includes a brief textual summary describing

all PID failures, followed by all justification information for each PID failure. The

report will be output in SunWrite format so that it can be edited by the user.

4.2. Reference Documents

IR&D Proposal AMP 91-03: Integrated Controls & Health Monitoring, Aerojet

NEXPERT Object User's Manuals (vol I and II). Neuron Data, Inc.

OpenWindows 1.0 User's Guide, Sun Microsystems

XView 1.0 Reference Manual: Summary of the XView API, Sun Microsystems

SunWrite 1.1 User's Guide, Sun Microsystems

SunOS Reference Manual (vol I, II, and III), Sun Microsystems

PV-WAVE User's Manual

Programming Language C, X3.159-1989, ANSI

4.3. Preliminary Design Description

4.3.1. Batch Mode

Data Flow

Figure 33 shows the top-level, formal data flow diagram for the batch mode

processing modules in the sensor validation system. Figure 34 shows the next level data

flow diagram for the Sensor Failure Detection module. The software modules in these

diagrams are described next.

Software Modules

Steady-State/Transient Partitioning.

state and transient intervals.

The test data will be partitioned into steady-
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Model Sampling. Data samples required by the characteristic and empirical

models (and any other models requiring engine-specific tuning for other tests) will

be taken from each data set partition.

Sensor Failure Detection. The probability of failure for each PID at each time point

will be assessed based on the fusion of all available information and tests and

output to the PID Status table. For each crossing of the Report Threshold, a

justification will also be output to the Justification Data file.

Characteristic Evaluator. The characteristics for the engine under test (including

true engine characteristics, and PID means and standard deviations) are

computed and output to the Engine Characteristics database.

Reconstruction. For each crossing of the Reconstruction Threshold, a

reconstructed sensor value will be generated and output to the Batch Mode

Reconstructed Data database.

Report Generation. The contents of the PID Status table will be output to the

Batch Report file.

In-Family Test. Each engine-specific characteristic sampled by the Model

Sampling module will be compared with family values in the Family Characteristics

database. If the engine-specific characteristic is "out-of-family" then that

characteristic will not be used for further sensor assessment, and information

about the out-of-family condition will be passed to the Information Fusion

module.

Time-Slice Partitioning. All PID values for a given test sampling time will be

extracted for use by the various assessment tests.

Characteristic Tests, Empirical Tests. All viable characteristics and empirical

models will be evaluated and compared to their corresponding sampled baseline

values. Information about the degree of disagreement (i.e., the size of the
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residual) will be passed to the Information Fusion module. Whenever the

probability of a sensor's failure exceeds the Failure Threshold (based on the PID

status table), tests involving that sensor's values will no longer be used.

Pattern Matching. Any pattern-matching techniques will be run, with the results

passed to the Information Fusion module.

Information Fusion. All sources of information about the status of each PID at

each time point in the test will be fused together using the technique of Bayesian

Belief Networks. The resulting probability of failure for each PID will be compared

to the Reporting Threshold and, if exceeded, justification data based on the tests

involved in the assessment and the Bayesian analysis will be written to the

Justification Data file. The best source of information to use for each physical

measurement, and the best reconstruction method to use for each PID are also

determined.

4.3.2. Interactive Mode

Data FI0w

Figure 35 shows the formal data flow diagram for the interactive mode processing

modules in the sensor validation system. The software modules in this diagram are

described next.

Softw6r¢ Modules

Plant Browser.

section II1.1.e.

Performs the "Display Plant Summary" function described in

Justification Browser. Performs the "Display Justification" function described in

section II1.1.e.

PID Matrix Authorizer. Performs the "Display PID Matrix" function described in

section l.e.

Plot Generator. Performs the "Plot Generation" function described in section 1.e.
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Family Update. Some or all of the characteristics for the engine under test will be

added to the Family Characteristics database, once the PID Matrix has been

authorized.

Reconstruction. PID values not reconstructed during batch mode may be

generated in real time if requested by the user.

Failure History Update. The PID Reliability & Failure History database will be

updated with the failed PIDs in the PID Matrix, once it has been authorized.

UCR Generator. UCRs will be generated as specified in the PID Matrix, once it

has been authorized.

Validated Test Set Generator. A final engine test data set will be assembled from

real and reconstructed PID values according to the PID Matrix, once it has been

authorized.

Report Generator. A final report will be generated, consisting of a brief summary

of all failed PIDs, followed by a justification for each failure assessment. The

report is based on the PID Matrix and the Justification Data file, and is generated

once the PID Matrix has been authorized.

4.3.3 External File Structure

Engine Test Data Set - Ingres database containing the raw data from the test

under analysis, with all values converted into engineering units.

PID Reliability & Failure History - Ingres database containing the reliability

(manufacturer's statement) of each sensor, in addition to the failure history for

each particular PID.

Family-Averaged Models Ingres database containing the characteristics,

summarized at each power level, for all engines.
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Engine Models - Ingres database containing the characteristics, summarized at

each power level, for the engine under test.

Batch Mode Reconstructed Data - Ingres database containing all reconstructed

PID values (same as Engine Test Data Set, except that the start and stop times

and reconstruction method used are also recorded).

Justification Data - An ASCII file containing text and plot generation information for

each PID whose probability of failure exceeded the Report Threshold.

Batch Report - ASCII text file, formatted for ease of reading into the interactive

mode system, but also sufficiently annotated to make it usable as a hardcopy

report.

Validated Test Data - Ingres database; same format as Engine Test Data Set.

Thresholds - Text file containing the report, reconstruction, and failure threshold

values.

4.4 Test Provisions

The sensor assessment capabilities of the system will be evaluated by the

following methods:

Review of heuristics and strategies with experts.

Running several test cases through the system, using real or simulated failures as

necessary to obtain broad test coverage.

Running two new test cases provided by NASA LeRC through the system.

in the system will be evaluated during

In addition, the overall capabilities of the system, including the interactive mode

user interface, will be evaluated during demonstrations (as scheduled in section IV) to

members of NASA LeRC.
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5.0 SYSTEM DEVELOPMENT PLAN

The Phase II development plan for the Sensor Validation system is shown in

Figure 36. The development spans two and one-half years, at the end of which a fully

functional software module, integrated with the Session Manager of the SSME Life

Prediction system, will be delivered. The Sensor Validation system architecture, as

described above, allows for incremental addition of validation tests, thus validation

techniques can be developed and implemented by several groups (e.g., neural network

and time series approaches by NASA Lewis) and integrated into the system before

delivery.

5.1. 1991 Development Tasks

Batch System Design, NASA Review

The architecture of the Batch Processing system will be designed. The result of this task

will be a detailed design document, specifying data structures, software modules and

their interfaces. This design document will be reviewed and approved by NASA before

implementation proceeds.

Information Fusion Implementation

The Information Fusion module will be implemented, using the Bayesian Belief Network

approach. This module will consist of procedure calls to define the network, to run the

update/solution algorithm, and to extract results (probability distribution for any node in

the network).

Redline and Redundant Channel Test Implementation

The Redline and Redundant Channel Test modules will be the first validation techniques

implemented, since they are the most straightforward to implement and their results are

easily verifiable. In addition to the test modules themselves, the Steady-State/Transient

Partitioning, Time-Slice Partitioning, and Batch Report Generation modules will be

implemented and integrated with the Information Fusion module so that the test modules

can be fully tested. The Redline and Redundant channel tests will be fully functional for

all 114 critical PIDs described in Section 3.1.1.
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Analytic & Empirical Test Framework Implementation

The Analytic and Empirical Test modules will be implemented. This initial implementation

will utilize family-averaged characteristic values (the Model Sampling module will not be

implemented), and the tests will only be used on steady-state test data segments. In

addition, only those models developed in Phase I will be implemented (covering

approximately 50 PIDs). The Model Sampling module, characteristic database, and

remaining models will be developed in 1992.

Plant Display Tailoring

An existing prototype of the Interactive Mode Plant Browser will be modified to display

the results of the Batch Processing system for all 131 PIDs.

Review and Demonstration

A final review will be conducted at Aerojet Propulsion Division in Sacramento, California.

The review will include a demonstration of the Sensor Validation system on the test data

sets currently in Aerojet's possession. A report of the 1991 activities will be delivered to

NASA TBD days following the final review.

Summary

In 1991 a minimally-functional Batch Processing system will be developed, which will

perform validation on all 131 critical PIDs. A very simple graphical user interface

(consisting of the Plant Browser module of the Interactive System) will be developed for

displaying the results of the Batch processing. This development is expected to take

approximately 5-1/2 person-months of effort.

5.2 1992 Development Tasks

Interactive System Design, NASA Review of Design Document

The architecture of the Interactive Processing system will be designed. The result of this

task will be a detailed design document, specifying data structures, software modules

and their interfaces. This design document will be reviewed and approved by NASA

before implementation proceeds.
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PID Matrix Implementation

The PID Matrix Authorizer module will be implemented, allowing the analyst to browse

and modify the results of the Batch Mode processing.

Plot Generation Implementation

The Plot Generation module will be implemented for plotting PID values (as requested by

the analyst) and for displaying graphical elements of Batch Mode justifications.

Analytical & Empirical Modeling

The Model Sampling module in the Batch Processing system and the Family Update

module in the Interactive Processing system will be implemented, in addition to the

Family and Engine characteristic databases. A complete set of analytical and empirical

models, covering all 114 critical PIDs, will be developed and implemented.

Reconstruction Implementation

The Reconstruction module (used in both the Batch and Interactive systems) and the

Validated Test Set Generator modules will be implemented.

Evaluation on Test Cases

The Sensor Validation system (the Batch Mode module of which will be essentially

complete) will be evaluated on test cases provided by NASA Lewis.

Review and Demonstration

A final review will be conducted at NASA Lewis Research Center in Cleveland, Ohio.

The review will include a demonstration of the Sensor Validation system on the test

cases provided by NASA. A report of the 1992 activities will be delivered to NASA TBD

days following the final review.

Summary

In 1992 the Sensor Validation system will be complete, except for the ability to justify

conclusions, and without the integration of validation techniques developed by other

groups. At this point, the system can be fielded at MSFC for initial evaluation.
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5.3. 1993 Development Tasks

Justification Generation and Display

The ability for the Batch Mode system to generate justifications, and for the Interactive

Mode system to display them will be implemented.

Report Generation

The Report Generation module in the Interactive Mode system will be implemented to

produce SunWrite-editable reports describing and justifying the conclusions reached by

the Sensor Validation system.

UCR Generation

The UCR Generation module in the Interactive Mode system will be implemented to

produce UCRs as requested by the analyst.

Integration of Tests

Sensor validation techniques developed by other groups will be integrated into the final

sensor validation system. This includes extending the Information Fusion module to

incorporate the results from these tests.

Integration with Session Manager

Both the Batch and Interactive mode systems will be integrated with the Session

Manager, so that the Sensor Validation system can be run from the unified Life

Prediction system interface.

Review and Demonstration

A final review will be conducted at NASA Lewis Research Center in Cleveland, Ohio.

The review will include a demonstration of the Sensor Validation system on additional

test cases provided by NASA. A report of the 1993 activities will be delivered to NASA

TBD clays following the final review.

Training

One-week of on-site training will be provided to analysts wishing to use the Sensor

Validation system. The training will not only cover how to run both modes of the system,

but will cover how to modify the system's parameters (i.e., Batch thresholds, Test

parameters, and Belief Network probabilities).
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Appendix A: INTERVIEWS WITH DATA VALIDATION EXPERTS
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A trip was taken to NASA MSFC on 4-7 June to meet with SSME data

analysts and engine experts. The interviews were conducted with both Martin

Marietta and NASA personnel. In addition two post test data review were attended.

The results of these interviews have been used to prepare the Users Requirements

Document (URD.) In addition, interviews have been conducted with Aerojet

personnel knowledgable with sensor data validation.

A brief summary of key interviews and comments from the trip to NASA MSFC

are given below. The following questions were asked of the NASA MSFC personnel

during the interviews.

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)
(9)
(lO)

(11)

What is the current data validation procedure?

How is previous test data used in the validation procedure?

How are test stand, engine, and component variations accounted for?

What types of computer interfaces are used or would be most useful

(i.e. hardcopy plots, databases, on-line plots and zooms)?

Which sensors historically are prone to failure?

What records of failed PID's are maintained?

What I/O format is required to handle data at MSFC?

What analytical models of the SSME might be available?

Who at MSFC would be principle users of this system?

Who at MSFC would be interested in receiving status updates on the

progress of the system?

Who at MSFC could ask questions regarding specific PID's on recent

tests?

General Comments

All the NASA MSFC and Martin Marietta personnel interviewed were extremely

helpful, interested, and generous with their time during the trip to Huntsville. Two

types of meeting were conducted. First, general overview meetings were held with

Darby Makel and Mark Gage of Aerojet, and Ron De Hoff of SCT, along with a given

MSFC interviewee. In these meetings the program objectives and the relationships

between Task 3 and Task 4 were explained. These meetings were then followed up
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with one on one meetings between Darby Makel and the various SSME data

analysts.

Interview with David Vaughn:

David Vaughn is the manager of the Martin Marietta Data Analysis Group. He was

very supportive of the program objectives and stated that there is a "real need" for the

sensor data validation code as soon as possible. He said he would be the contact

person for providing information and data regarding the historical behavior of

particular PID's and test firings. David described their current sensor data validation

procedure as a "confirmation procedure," where the data analysts have sufficient

experience and intuition that they can inspect other transducer readings to confirm a

failrd sensor reading. While this procedure is qualitative it appears to be a good

starting place for a rule based approach. While David did not provide specifics

regarding system requirements, he emphasized the need to link the Sun into their

overall data flow.

Interview with David Foust:

David Foust is the lead engineer in the Data Analysis Group, he reports to David

Vaughn. David's group has the primary responsibility for detecting sensor failures as

part of their overall responsibility to review engine operation from test to test. The

data analysis group examines a standard set of data plots for each test. If anomalies

are detected other plots are requested after the initial review or previous test records

are examined. Sensor failure detection depends on the analysts' manual review of

the plots. In addition, not all of the CADS and Facility PIDs are plotted. Failed PIDs

not plotted may never be detected (however, these PIDs are not very important for

assessing engine operation). Once a failed PID is detected, a confirmation

procedure is used to determine if the signal is the result of a sensor problem or an

engine problem. If the anomalous signal occurs during main stage, the sensor

reading during pretest and post test is examined to see if erratic behavior or scaling

problems exist. In addition, other sensors which should be similarly affected by off

nominal engine behavior are examined. A typical confirmation is to examine

pressures and temperatures upstream and downstream of an anomalous sensor.

The sensor reading will also be compared to previous test data. The previous test

data must always be from the same test stand and preferably with the same engine
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and the same turbopumps. If data with the same engine is not available, then data

from an engine with as many of the same pumps as possible is used. The degree of

variation in a sensor reading is judged based on a two sigma data base maintained

by David Foust's group. A different 2 sigma data base exists for each of the three

NASA SSC test stands. As a general rule an "typical" transducer will fail once in

every 10 tests and small number of "problem" transducers fail on more than 50% of

tests. David Foust viewed an automated sensor data validation procedure as a

significant improvement to the efficiency of the current data review process.

Interview with Brian Pierkarski:

Brian Pierkarski is the lead engineer in the Model Analysis Group, he reports to David

Vaughn. The Model Analysis group is responsible for calculating the performance for

each test. This group uses the test data as an input to the steady state performance

model. Brain's group is very sensitive to the issue of sensor failures and are very

supportive of the data validation and signal reconstruction code. The calculation of

specific impulse is very sensitive to slight errors in the model input PID's. Slight

sensor drifts which are within the 2 sigma band, and may not appear significant to the

data analysts assess engine operation, can cause appreciable errors in the

performance calculation. Signal reconstruction is of particular interest to the model

group. Currently, if a PID needed for the steady state model is missing due to a

sensor failure, an approximate average value is input by the operator.

Interview with Marc Neely:

Marc Neely is a NASA MSFC engineer and works in the Liquid Propulsion Branch.

Marc was very interested in the sensor data validation program and offered to provide

help as the program evolved. He reiterated much the same technical information as

discussed above. In addition, he feels that an expert system approach is the most

suitable based the current state of knowledge of the SSME and the lack of a good

model which can yield data that accurately predicts sensor readings. He expressed

the opinion that the it would be necessary to bring a beta-test version of the code to

MSFC, with on-site support from Aerojet. This task would be needed to test out its

operation and build confidence among the analysts and NASA management in the

codes operation and reliability.
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Interview with Bill Baker (Aerojet)

• Bill Baker is in Data Services. Bill

programs (including Titan) in the test area.

performs data analysis for about 15

The primary function of Data Services is to provide 'Qualified Data' to

Engineering. Thus, the detection and resolution of sensor anomalies is their

responsibility (although, they frequently work together with Engineering in resolving

problems which turn out to be sensor malfunctions).

Procedure:

-Sensors are calibrated in the lab to specifications.

-Sensors are installed on the stand and hooked up to electrical and recording

equipment.

-A pre-test electrical calibration is run. Each sensor is stepped through four

voltage levels (25, 50, 75, and 100% of maximum nominal value) to simulate its

output. The sensor's response to these excitations are recorded and the absolute

value, linearity, and return to zero are computed for each test.

-Immediately following a test a post-test electrical calibration is run.

-Approximately one hour after the test (when the engine has completely de-

pressurized) another post-test electrical calibration is run.

(All of the above data is available for diagnostic purposes.)

For each sensed parameter the following values are computed for each steady-

state summarized time slice for post-test analysis:

-Standard deviation for each sensor.

-Variance of each sensor from a family nominal value.

-For duplex sensors: Difference and percent difference from each other

(compared to historical difference).

• No hard "redlines" are used to automatically discredit sensors (although Bill

mentioned that a 3-sigma variance warranted investigation).

• If two duplex sensors differ by too much and one is especially noisy, then you

tend to discredit the noisy one.
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There are two kinds of noise:

-Random (positive and negative variance).

-Spike (positive OR negative variance at periodic intervals); indicative of an

electrical problem.

• If you suspect a sensor problem, check the values upstream and downstream

from it.

• Bill always looks at computed performance data first. If there is a problem,

then he starts looking at suspect sensors on an as-needed basis.

If there is a serious sensor problem, will often re-calibrate the sensor in the

metrology lab and apply a correction factor (derived from the re-calibration

procedure) to the sensor data.

Unless a problem is detected, Bill typical does not look at:

-Facility sensors.

-Post-test calibration data.

-Transient data plots.

• Try to look at invariant relationships among sensors to diagnose problems

(e.g., AP or computed resistance). Example:
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Interview with Joe Berroteran (Aerojet)

• Joe is head of Aerojet's Instrumentation group in Design Engineering. He used

to work for Rocketdyne and performed failure analysis on the SSME

instrumentation.

Current SSME controller sensor validation procedure:

-Each sensor has yellow lines, red lines, and reasonableness lines (piecewise

models for all steady-state and transient conditions, see below), expressing upper

and lower bounds for the sensor's values. A yellow line represents the normal

operating range. Red lines demarcate abnormal (often unsafe) operating ranges.

Reasonableness lines demarcate regions which are physically impossible for the

sensor's value to fall within.

-Duplex sensors (including most SSME sensors): If either sensor is above the

red line but below the reasonableness line for two consecutive samples, then the

engine is shut down (for certain critical sensors). Otherwise, if either sensor is

over the reasonable line for two consecutive counts then that sensor is assumed to

have failed and is ignored.

• SSME test procedures do include a pre- and post- test calibration.

• There are five major classes of sensors on the SSME: temperature, pressure,

flow, speed, and acceleration.

Open circuits (both hard and intermittent, caused by a broken wire, e.g.) are

probably the most common sensor failure. Typically an open circuit will cause a

sensor's value to go to zero (or some very small constant "offset" value).

Intermittent open circuits show up as instantaneous variations from normal to zero

(or offset).

Short circuits (e.g., due to contamination) are very rare (Joe has only seen one

or two in over 10 years). Instrument circuitry is typically designed to shut down the

sensor if a short occurs.
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• "Spikes" - sensor readings which change faster than their measured

parameters could physically change - are indicative of sensor failures.

Speed and flow sensors are subject to "aliasing" in which the sensor reading

has a low frequency sine wave superimposed onto it. This is fundamentally due to

a timing problem, but can be caused by mis-alignments of the sensors (e.g., Joe

had an example of a flow meter which suffered from aliasing due to its four

impellor blades not being at perfect right angles to each other). This is a very rare

problem.

• Pressure sensors are subject to drift due to thermal effects. Drift typically

shows up as a constantly increasing or decreasing bias.

• Pressure sensors are also subject to "overshoot" of about 3-5psi. It can take

around 15 seconds for them to settle to their correct value.

• Temperature sensors can go out of calibration due to thermal expansion. This

results in a constant bias ( 1% FS) in the open circuit direction.

Pressure sensors have a "reference vacuum" on the inner side of their

diaphragm. These sensors can lose this vacuum, resulting in a constant bias (this

should show up as a difference between pre- and post- test calibrations).

Sensor accuracy specs for SSME:

-All sensor systems must be accurate to within 2% FS (including transmission,

A/D conversion, etc.).

-Pressure and temperatures transducers must be accurate to within 1/4% FS.

-Flow and speed transducers must be accurate to within 1/2% FS (?).

Interview with Bill Ferrell (Aerojet)

• Bill Ferrell has 31 years' experience at Aerojet (including 5 years in the test

area), mostly on the Titan program. He currently analyzes data from Titan flights

and acceptance tests, particularly when an anomaly is discovered.
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Bill confirmed that the primary way sensor malfunctions are currently detected

and diagnosed on Titan is through analysis of the engine characteristics

(resistances, performance biases, etc.). These characteristics should be relatively

constant across the range of engine performance, and should have a predictable

variance from engine to engine, both making anomaly detection easier.

Bill showed me plots of three related characteristics from the most recent Titan

acceptance test which clearly demonstrate the usefulness of using characteristics

for anomaly detection and diagnosis (see the two pages attached to this report).

These three parameters are:

ROT Total resistance from turbopump discharge to

chamber.

ROL - Resistance from turbopump discharge to injector.

"Chamber Assembly").

ROJ - Resistance across injector (also called ROTCA for

Gravity) / (Flow) 2

Resistance = (Pressure drop across line)*(Specific

In the most recent test, the values for ROL, ROJ, and ROT were as shown on

the first graph. ROT stayed constant, but ROJ and ROJ varied. However, their

variance was equal in magnitude and opposite in direction, indicating a problem

with the POJ sensor. Note that if aft resistances are high or low, then the sensors

used for computing Specific Gravity or Flow should be suspect.

Bill mentioned that accuracy of computed characteristics depends on the

accuracy of the sensors involved and the formulas used in their derivation. For

example, if the pressure drop between two pressure sensors is very small (e.g.,

across a pipe) then the computed resistance will have a high variance because a

small change in either pressure will have a large effect on computed resistance.

A second method for detecting sensor failures used by Ferrell is to look at the

transient curves of characteristics (even though they don't change much, they still

experience small transients on engine startup and shutdown). The second chart
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attached shows ROJ for the last five Titan turbopump tests over time. The most

recent test clearly shows a deviation from family norms.

Another diagnostic method that Ferrell suggested (given that an engine has

already been tested once to derive an initial set of characteristics) involves taking a

few critical sensor values (at steady-state) and deriving what all other sensor

values should be using the engine's characteristics as true. Deviations of sensors

from these "reconstructed" values are then used for anomaly detection.

Bill also mentioned that the pre-test and post-test calibrations for sensors

should be compared (see the 1/17/91 interview notes for Bill Baker); any

mismatches are indicative of malfunction.

Two other heuristics that Bill mentioned were:

-If a sensed value has an unusually high variance it typically indicates a sensor

problem (Bill visually inspects transient plots and knows what normal variances

"look" like, see the third chart attached to this write-up).

-If a sensed value has an unusually high frequency it typically indicates a

sensor problem, especially if the signal is changing faster than the process could

physically change.
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Appendix B: CHARACTERISTIC AND REGRESSION MODELS
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Results of characteristic equations
based on family average characteristics

Test A2497
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Results of characteristic equations
using engine specific data

Test A2497
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Results of characteristic equations
applied to engine start transient using
engine specific characteristics derived
from steady state
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Regression equation results using best
correlating parameters including redundants.
Correlation coefficients based on "family average" derived coefficients.

Test A2497 @109% RPL
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Regression equation results using best
non-redundant parameters and "family average"
coefficients.

Test A1619 @104% RPL
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TO: ML Gage

AeroJet TechSystem$

Huntsville Ol_rltlons
700 Boulevard South Suite 306
Huntsville AL 35802-2176

(2O5)683-O5OO

11 April 1990

FROM: DM Matson

DISTRIBUTION: JH Berrotera_ RL Bickford, DB Makel, Dept. 9842 file

SUBJECT: Two-sigma Variation of CADS Sensor Data as a Function of
Engine Power Level

Enclosures: /_l
Typical Flight Data for Selected Parameters
CADS Flight Data as a Function of Engine Power Level

The attached enclosures contain flight data taken from historical SSME
sources. Enclosure 1 contains typical flight data for chamber pressure, Lox inlet
pressure, and turbine discharge temperatures for fuel and ox pumps. These
parameters are selected such that the CADS data in enclosure 2 can be intelligently
correlated.

The main combustion chamber pressure was selected to indicate power level
as a function of time for the flight of engine 0217. The nominal power drops from
104 percent to 65 percent between approximately thirty to seventy seconds from
liftoff and then returns to 104 It will be obvious later that the only truly

• _ercenLmeaningful data at maxunum is represented by the 104 percent data base in
enclosure 2.

LOX inlet pressure shows a maximum at about 80 seconds and a minimum at
about 120 seconds after liftoff. These points represent maximum Q and SRB
separation, respectively. In order to evaluate the flight data, NASA engineers
elected to examine" these two Operational modes and composed two data baselines.
The method used to identify these modes was to take data at the maximum fuel
turbine and maximum ox turbine temperature conditions. Data showing this effect
occurring at approximately 90 and120 seconds after liftoff can be respectively seen
in the last two sensor traces in enclosure 1.

The results of the two-sigma analysis are shown in enclosure 2.

If I can be of any further assistance, please call. For more information on
this database, NASA engineer Mike Ise (pronounced "F.asy') can be reached at
(205)544-4946. He is most helpful but the demands on his time are high.

,,P.--77.
Douglas M. Matson
Materials/Test Specialist



ENCLOSURE 1 Typical Flight Data for Selected Parameters

MCC Pressure

LOX Inlet Pressure

H.PFTT Discharge Temperature

HPOTI" Discharge Temperature

All data taken from Engine S/N 2017
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ENCLOSURE 2 CADS Flight Data as a Function of Engine Power Level

Phase II Data Base (Issue Date 10-13-89)
Summary of CADS sensor data encompassing

approximately 150 flight tmngs
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Commercially Available Pattern Matching
and

Neural Network Software

Package Name

1. NeuroSym
Neurocomputing
Library

2. Brain Maker
V 2.3
Brain Maker
Professional
V2.0

3. NeuroShell

4. Professional II
Plus

5. Explore Net
3000

6. pLOGIC

7. NDS 1000
Version 1.2

8. MacBrain

Pr_)duct Description

Library of neural networks programmed
in C language; requires C compiler;
source code provided; 12 architectures
included.

Stand-alone neural net development tool;
Some C source code provided with
Professional V 2.0; 8 architectures
included.

Stand-alone neural net development tool;
Source code provided with run time option;
2 architectures available.

Stand-alone neural net development tool;
31 architectures supported.

Stand-alone neural net development tool;
requires AT with Microsoft Windows.
21 architectures included; no source
code available.

Stand-alone statistical pattern-recognition
software; requires 336-based PC with
math coprocessor, plus 2 megabytes
extended memory; source code available,
but not included.

Stand-alone neural network pattern
recognition tool; uses I proprietary archi-
tecture; versions available for PC and Sun
Workstations; source code not available.
Can be imbedded in hardware.

Stand-alone neural net development tool;
requries Macintosh Plus or better; 12 archi-
tectures and some source code (C and
Pascal) included.

Public;her

NeuroSym Corporation
P. O. Box 980683
Houston, TX 77098-0683

(713) 523-5777

California Scientific
Software

10141 Evening Star Dr., #6
Grass Valley, CA 95945
(916) 477-7481

Ward Systems Group, Inc.
245 West Patrick Street
Frederick, MD 21701

Neural Ware, Inc.
Penn Center West,
Bldg. IV, Suite
Pittsburg, PA 15276
(412) 787-8222

Hecht-Nielsen
Neurocomputers
5501 Oberlin Drive
San Diego, CA 92121
(619) 546-8877

pLOGIC Knowledge
Systems, Inc.
23133 Hawthorne Blvd.,

3rd Floor
Torrance, CA 90505
(213) 378-3760

Nestor, Inc.
One Richmond Square
Providence, RI 02906

Neurix
327 A Street, 6th FI.
Boston, MA 02102
(617) 577-1202
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